Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có:
\(\left\{{}\begin{matrix}x^2+1\ge2x\\y^2+1\ge2y\\z^2+1\ge2z\\2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+xz\right)\end{matrix}\right.\)
Cộng theo vế cá BĐT trên ta có:
\(3\left(x^2+y^2+z^2\right)+3\ge2\left(x+y+z+xy+yz+xz\right)\)
\(\Rightarrow3\left[\left(x^2+y^2+z^2\right)+1\right]\ge12\)
\(\Rightarrow\left(x^2+y^2+z^2\right)+1\ge4\Rightarrow P\ge3\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Lời giải:
Ta cần chứng minh \(\frac{xy}{z}+\frac{yz}{x}+\frac{xz}{y}\geq x^2+y^2+z^2\)
\(\Leftrightarrow \frac{x^2y^2+y^2z^2+z^2x^2}{xyz}\geq \sqrt{3(x^2+y^2+z^2)}\)
\(\Leftrightarrow x^2y^2+y^2z^2+z^2x^2\geq xyz\sqrt{3(x^2+y^2+z^2)}\)
\(\Leftrightarrow (x^2y^2+y^2z^2+z^2x^2)^2\geq 3x^2y^2z^2(x^2+y^2+z^2)\)
\(\Leftrightarrow x^4y^4+y^4z^4+z^4x^4+2x^2y^2z^2(x^2+y^2+z^2)\geq 3x^2y^2z^2(x^2+y^2+z^2)\)
\(\Leftrightarrow x^4y^4+y^4z^4+z^4x^4\geq x^2y^2z^2(x^2+y^2+z^2)\)
\(\Leftrightarrow \frac{1}{2}\left[ (x^2y^2-y^2z^2)^2+(y^2z^2-x^2z^2)^2+(x^2y^2-x^2z^2)^2\right]\geq 0\)
(luôn đúng)
Do đó ta có đpcm.
Dấu bằng xảy ra khi \(x=y=z=1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x+y+z=3\Rightarrow x^2+y^2+z^2+2\left(xy+yz+zx\right)=9\Leftrightarrow xy+yz+zx=0\left(\text{vì:}x^2+y^2+z^2=9\right)\)
\(xy+yz+zx=0\Rightarrow xy=-yz-zx;yz=-xy-xz;xz=-xy-yz\)
\(P=\frac{-x\left(y+z\right)}{x^2}+\frac{-y\left(z+x\right)}{y^2}+\frac{-z\left(x+y\right)}{z}-4=\frac{y+z}{-x}+\frac{z+y}{-y}+\frac{x+y}{-z}-4\)
\(P=\frac{3}{x}+\frac{3}{y}+\frac{3}{z}-1=\frac{3yz+3xz+3xy}{xyz}-1=0-1=-1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\text{Sử dụng AM-GM, ta có}\)
\(\left(x+y+z\right)^2\le3\left(x^2+y^2+z^2\right)\Rightarrow x+y+z\le\sqrt{3\left(x^2+y^2+z^2\right)}\)
\(xy+yz+xz\le x^2+y^2+z^2\)
\(\text{Cộng theo vế, ta được}\)
\(6=x+y+z+xy+yz+xz\le\sqrt{3\left(x^2+y^2+z^2\right)+x^2+y^2+z^2}\)
Suy ra\(x^2+y^2+z^2\ge3\)
\(x^2+1\ge2x;y^2+1\ge2y;z^2+1\ge2z\)
\(\Rightarrow x^2+y^2+z^2+3\ge2x+2y+2z\Rightarrow\frac{x^2+y^2+z^2}{2}+\frac{3}{2}\ge x+y+z\)
\(x^2+y^2\ge2xy;y^2+z^2\ge2yz;z^2+x^2\ge2zx\)
\(\Rightarrow x^2+y^2+z^2\ge xy+yz+zx\)
Khi đó:\(\frac{3}{2}\left(x^2+y^2+z^2\right)+\frac{3}{2}\ge x+y+z+xy+yz+zx=6\)
\(\Rightarrow x^2+y^2+z^2+1\ge4\Rightarrow x^2+y^2+z^2\ge3\)
![](https://rs.olm.vn/images/avt/0.png?1311)
#)Góp ý :
Mời bạn tham khảo :
http://diendantoanhoc.net/topic/160455-%C4%91%E1%BB%81-to%C3%A1n-v%C3%B2ng-2-tuy%E1%BB%83n-sinh-10-chuy%C3%AAn-b%C3%ACnh-thu%E1%BA%ADn-2016-2017/
Mình sẽ gửi link này về chat riêng cho bạn !
Tham khảo qua đây nè :
http://diendantoanhoc.net/topic/160455-%C4%91%E1%BB%81-to%C3%A1n-v%C3%B2ng-2-tuy%E1%BB%83n-sinh-10-chuy%C3%Ân-b%C3%ACnh-thu%E1%BA%ADn-2016-2017
tk cho mk nhé
![](https://rs.olm.vn/images/avt/0.png?1311)
ta có xy.yz.xz= 3.4.6=72
\(\Rightarrow\)x2y2z2=72 \(\Rightarrow\) xyz=\(\sqrt{72}\)
mà \(\left\{\begin{matrix}xy=3\\xz=4\\yz=6\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{\begin{matrix}z=2\sqrt{2}\\y=\frac{3\sqrt{2}}{2}\\x=\sqrt{2}\end{matrix}\right.\)
\(\Rightarrow\)x2+y2+z2=(\(\sqrt{2}\))2+(\(\frac{3\sqrt{2}}{2}\))2+(2\(\sqrt{2}\))2=14.5