K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2016

Áp dụng BĐT Bunhiacopski ta có:

\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x+y\right)^2=2^2=4\)

\(\Rightarrow2\left(x^2+y^2\right)\ge4\)

\(\Rightarrow x^2+y^2\ge2\)

Dấu "=" khi x=y=1

Vậy MinA=2 khi x=y=1

 

30 tháng 11 2018

\(A=\frac{3}{\left(x+2\right)^2+4};\left(x+2\right)^2\in N\)

\(\Rightarrow A_{max}\Leftrightarrow\left(x+2\right)^2=0\Leftrightarrow\left(x+2\right)^2+4=4\)

\(\Rightarrow A_{max}=\frac{3}{4}\)

b, \(B=\left(x+1\right)^2+\left(y+3\right)^2+1\)

Mặt khác: \(\left(x+1\right)^2;\left(y+3\right)^2\in N\Rightarrow\left(x+1\right)^2+\left(y+3\right)^2\ge0\)

\(\Rightarrow B_{min}\Leftrightarrow\left(x+1\right)^2+\left(y+3\right)^2=0\Rightarrow B_{min}=1\)

30 tháng 11 2018

\(A=\frac{3}{\left(x+2\right)^2+4}\)

Để A max

=>(x+2)^2+4 min

\(\left(x+2\right)^2\ge0\Rightarrow\left(x+2\right)^2+4\ge4\)

Vậy Min = 4 <=>x=-2

Vậy Max A = 3/4 <=> x=-2

\(b,B=\left(x+1\right)^2+\left(y+3\right)^2+1\)

Có \(\left(x+1\right)^2\ge0;\left(y+3\right)^2\ge0\)

\(\Rightarrow B\ge0+0+1=1\)

Vậy MinB = 1<=>x=-1;y=-3

12 tháng 4 2024

Bài 1:

|\(x\)| = 1 ⇒ \(x\) \(\in\) {-\(\dfrac{1}{3}\); \(\dfrac{1}{3}\)}

A(-1) = 2(-\(\dfrac{1}{3}\))2 - 3.(-\(\dfrac{1}{3}\)) + 5

A(-1) = \(\dfrac{2}{9}\) + 1 + 5

A (-1) = \(\dfrac{56}{9}\)

A(1) = 2.(\(\dfrac{1}{3}\) )2- \(\dfrac{1}{3}\).3 + 5

A(1) = \(\dfrac{2}{9}\) - 1 + 5

A(1) = \(\dfrac{38}{9}\)

 

12 tháng 4 2024

|y| = 1 ⇒ y \(\in\) {-1; 1} 

⇒ (\(x;y\)) = (-\(\dfrac{1}{3}\); -1); (-\(\dfrac{1}{3}\); 1); (\(\dfrac{1}{3};-1\)); (\(\dfrac{1}{3};1\))

B(-\(\dfrac{1}{3}\);-1) = 2.(-\(\dfrac{1}{3}\))2 - 3.(-\(\dfrac{1}{3}\)).(-1) + (-1)2

B(-\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\) - 1 + 1

B(-\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\)

B(-\(\dfrac{1}{3}\); 1) = 2.(-\(\dfrac{1}{3}\))- 3.(-\(\dfrac{1}{3}\)).1 + 12

B(-\(\dfrac{1}{3};1\)) = \(\dfrac{2}{9}\) + 1 + 1

B(-\(\dfrac{1}{3}\); 1) = \(\dfrac{20}{9}\) 

B(\(\dfrac{1}{3};-1\)) = 2.(\(\dfrac{1}{3}\))2 - 3.(\(\dfrac{1}{3}\)).(-1) + (-1)2

B(\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\) + 1 + 1

B(\(\dfrac{1}{3}\); -1) = \(\dfrac{20}{9}\)

B(\(\dfrac{1}{3}\); 1) = 2.(\(\dfrac{1}{3}\))2 - 3.(\(\dfrac{1}{3}\)).1 + (1)2

B(\(\dfrac{1}{3}\); 1) = \(\dfrac{2}{9}\) - 1 + 1

B(\(\dfrac{1}{3}\);1) = \(\dfrac{2}{9}\)

 

13 tháng 3 2017

AI KẾT BN KO!

TIỆN THỂ TK MÌNH LUÔN NHA!

KONOSUBA!!!

11 tháng 1 2018

bài 1:

|x| = \(\dfrac{1}{3}\) => x = \(\pm\)\(\dfrac{1}{3}\) |y| = 1 => y = \(\pm\)1

a

+) A = 2x\(^2\) - 3x + 5

= 2\(\left(\dfrac{1}{3}\right)^2\) - 3.\(\dfrac{1}{3}\) +5 = 2.\(\dfrac{1}{9}\) - 1 + 5

= \(\dfrac{2}{9}\) - 1 + 5 = \(\dfrac{2-9+45}{9}\) = \(\dfrac{38}{9}\)

+) A = 2x\(^2\) - 3x + 5

= 2\(\left(\dfrac{-1}{3}\right)^2\) - 3\(\left(\dfrac{-1}{3}\right)\) + 5

= 2.\(\dfrac{1}{9}\) - (-1) + 5 = \(\dfrac{2}{9}\) + 1 +5

= \(\dfrac{2+9+45}{9}\) = \(\dfrac{56}{9}\)

b) +) B = 2x\(^2\) - 3xy + y\(^2\)

= 2\(\left(\dfrac{1}{3}\right)^2\) - 3.\(\dfrac{1}{3}\).1 + 1\(^2\)

= 2.\(\dfrac{1}{9}\) - 1 + 1 = \(\dfrac{2}{9}\) - 1 + 1

= \(\dfrac{2-9+9}{9}\) = \(\dfrac{2}{9}\)

+) B = 2x\(^2\) - 3xy + y\(^2\)

= 2\(\left(\dfrac{-1}{3}\right)\)\(^2\) - 3\(\left(\dfrac{-1}{3}\right)\). 1 + 1\(^2\)

= 2.\(\dfrac{1}{9}\) - (-1) + 1 = \(\dfrac{2}{9}\) + 1 + 1

= \(\dfrac{2+9+9}{9}\) = \(\dfrac{20}{9}\)

11 tháng 1 2018

bài 3

x.y.z = 2 và x + y + z = 0

A = ( x + y )( y +z )( z + x )

= x + y . y + z . z + x = ( x + y + z ) + ( x . y . z )

= 0 + 2 = 2

bài 4

a) | 2x - \(\dfrac{1}{3}\) | - \(\dfrac{1}{3}\) = 0 => | 2x - \(\dfrac{1}{3}\) | = \(\dfrac{1}{3}\)

=> 2x - \(\dfrac{1}{3}\) = \(\pm\) \(\dfrac{1}{3}\)

+) 2x - \(\dfrac{1}{3}\)= \(\dfrac{1}{3}\)

=> 2x = \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) = \(\dfrac{2}{3}\)

x = \(\dfrac{2}{3}\) : 2 = \(\dfrac{2}{3}\) . \(\dfrac{1}{2}\) = \(\dfrac{1}{3}\)

+) 2x - \(\dfrac{1}{3}\) = \(\dfrac{-1}{3}\)

2x = \(\dfrac{-1}{3}\) + \(\dfrac{1}{3}\) = 0

x = 0 : 2 = 2