K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔOAB có 

AM là phân giác góc ngoài tại A

BM là phân giác góc ngoài tại B

=>OM là phân giác của góc xOy

=>M cách đều hai cạnh của góc xOy

a: Xét ΔAHC vuông tại H và ΔAIC vuông tại I có

AC chung

góc HAC=góc IAC

=>ΔAHC=ΔAIC

=>AH=AI và CH=CI

 

16 tháng 10 2019

`a,` Xét Tam giác `OIM` và Tam giác `OIN` có:

`OM = ON (g``t)`

\(\widehat{MOI}=\widehat{NOI}\) `(` tia phân giác \(\widehat{xOy}\) `)`

`OI` chung

`=>` Tam giác `OIM =` Tam giác `OIN (c-g-c)`

`b,` Vì Tam giác `OIM =` Tam giác `OIN (a)`

`->` \(\widehat{OIM}=\widehat{OIN}\) `( 2` góc tương ứng `)`

`c,` Vì Tam giác `OIM =` Tam giác `OIN (a)`

`-> IM = IN (2` cạnh tương ứng `)`

`\color{blue}\text {#DuyNam}`

loading... 

bài 1 cho Ot là tia phân giác của góc nhọn xOy. trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA=OB. trên tia Ot lấy diểm M sao cho OM>OA.a, chứng minh tam giác AOM=tam giác BOMb. gọi C là giao điểm tia AM và tia Oy, gọi D là giao điểm của tia BM và tia Ox. chứng minh: Ac=BDc. nối A và B, vẽ đường thẳng d vuông góc với AB tại A. chứng minh d // Otbài 2 cho góc nhọn xOy. lấy điểm A thuộc tia Ox, lấy điểm...
Đọc tiếp

bài 1 cho Ot là tia phân giác của góc nhọn xOy. trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA=OB. trên tia Ot lấy diểm M sao cho OM>OA.

a, chứng minh tam giác AOM=tam giác BOM

b. gọi C là giao điểm tia AM và tia Oy, gọi D là giao điểm của tia BM và tia Ox. chứng minh: Ac=BD

c. nối A và B, vẽ đường thẳng d vuông góc với AB tại A. chứng minh d // Ot

bài 2 cho góc nhọn xOy. lấy điểm A thuộc tia Ox, lấy điểm B thuộc tia Oy sao cho OA=OB. qua A kẻ đường thẳng vuông góc với Ox cắt Oy tại M. qua B kẻ đường thẳng vuông góc với Oy cắt Ox tại N. gọi H là là giao điểm của AM và BN, I là trung của MN.chứng minh rằng 

a. ON=OM và AN=BM

b. tia OH là tia phân giác của góc xOy

c. đường thẳng qua B // AC cắt tia DN tại N

chứng minh: tam giác ABM=tam giác CNM

0
28 tháng 3 2022

Mn jup mik vs

 

a: Xét ΔOAM vuông tại A và ΔOBM vuông tại B có

OM chung

\(\widehat{AOM}=\widehat{BOM}\)

Do đó: ΔOAM=ΔOBM

=>MA=MB

Xét ΔMAF vuông tại A và ΔMBE vuông tại B có

MA=MB

\(\widehat{AMF}=\widehat{BME}\)

Do đó: ΔMAF=ΔMBE

=>MF=ME

b:

Ta có: OA=OB

=>O nằm trên đường trung trực của BA(1)

Ta có: MA=MB

=>M nằm trên đường trung trực của BA(2)

Từ (1) và (2) suy ra OM là đường trung trực của BA

=>OM\(\perp\)BA 

21 tháng 2 2021

1525012693_6.jpg

b) Xét tam giác AOC và tam giác BOC có:OA=OB(gt)góc AOC = góc BOC(OC là tia phân giác góc AOB)OC chung=>tam giác AOC=tam giác BOC(c-g-c)=>góc OAC= góc OBC=90độ(2 góc tương ứng)=>BC vuông góc với Ox