K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1.Cho góc xOy bằng 60 độ . Đường tròn tam K bán kính R tiếp xúc vs Ox tại A và Oy tại B.từ điểm M trên cung nhỏ AB ,vẽ tiếp tuyến vs đường tròn này cắt Ox ,Oy lần lượt tại C và D a)Tính chu vi tam giác COD theo R . Chứng tỏ chu vi đó khong đổi khi M chạy tren cung nhỏ AB b)C/m số đo CKD không đổi khi M chạy tren cung nhỏ AB 2.Cho nửa đường tròn (O) đường kính AB .Trên cùng nửa mặt phẳng bờ AB vẽ các đường...
Đọc tiếp

1.Cho góc xOy bằng 60 độ . Đường tròn tam K bán kính R tiếp xúc vs Ox tại A và Oy tại B.từ điểm M trên cung nhỏ AB ,vẽ tiếp tuyến vs đường tròn này cắt Ox ,Oy lần lượt tại C và D
a)Tính chu vi tam giác COD theo R . Chứng tỏ chu vi đó khong đổi khi M chạy tren cung nhỏ AB
b)C/m số đo CKD không đổi khi M chạy tren cung nhỏ AB

2.Cho nửa đường tròn (O) đường kính AB .Trên cùng nửa mặt phẳng bờ AB vẽ các đường tiếp tuyến Å ,By với (O) (A,B là các tiếp điểm )
Qua điểm M thuộc nửa đường tròn kẻ tiếp tiếp tuyến thứ ba cắt Å ,By lần lượt tại C và D. Gọi N là giao điểm của AD và BC. C/m:
a) CD = CA+DB b) MN ⊥ AB

3.Một đường thẳng d cố định nằm ngoài đường tròn (O;R) .Lấy điểm M bất kỳ trên d. Từ M vẽ hai tiếp tuyến MP và MQ đến (O;R)
(P,Q là tiếp điểm). Kẻ OH ⊥ d. Dây cung PQ cắt ở I, cắt OM ở K .C/m:
a) OH.OI =OM.OK=R2

0
15 tháng 3 2018

a, Chỉ ra |OI – OK| < IK < OI + OK => (1) và (k) luôn cắt nhau

b, Do OI=NK, OK=IM => OM=ON

Mặt khác OMCN là hình chữ nhật => OMCN là hình vuông

c, Gọi{L} = KB ∩ MC, {P} = IBNC => OKBI là Hình chữ nhật và BNMI là hình vuông

=> ∆BLC = ∆KOI

=>  L B C ^ = O K I ^ = B I K ^

mà  B I K ^ + I B A ^ = 90 0

L B C ^ + L B I ^ + I B A ^ = 180 0

d, Có OMCN là hình vuông cạnh a cố định

=> C cố định và AB luôn đi qua điểm C

11 tháng 11 2021

loading...

 

11 tháng 11 2021

loading...  

a) Trong tam giác OIK có:

|OK  OI| < IK < |OK + OI| hay ∣R−r∣<IK<∣R+r∣.

Vậy hai đường tròn (I) và (K) luôn cắt nhau.
b) Dễ thấy tứ giác OMCN là hình chữ nhật (Tứ giác có 3 góc vuông). 
Mà OM = OI + IM = OI + OK;

      ON = OK + KN = OK + OI.
Vậy OM = ON hay hình chữ nhật OMCN là hình vuông.
c) Gọi giao điểm của BK và MC là L và giao điểm của AB với MC là P.
Tứ giác IBKO là hình chữ nhật. Suy ra IB = OK.
Tứ giác MLBI là hình vuông nên ML = BI, BL = OK.
Từ đó suy ra ΔBLP=ΔKOI.  Vì vậy LP = OI.
Suy ra MP = ON = MC. Hay điểm C trùng với P.
Suy ra ba điểm A, B, C thẳng hàng.
d) Nếu OI + OK = a (không đổi) thì OM = MC = a không đổi. Suy ra điểm C cố định.
Vậy đường thẳng AB luôn đi qua điểm C cố định.