Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt x = 1 -a và x + y = 3 + b, từ giả thiết ta suy ra a, b \(\ge0\).
Ta có: y = 2 + a + b. Từ đó:
\(B=3x^2+y^2+3xy\)
\(B=3\left(1-a\right)^2+\left(2+a+b\right)^2+3\left(1-a\right)\left(2+a+b\right)\)
\(B=a^2+b^2-5a+7b-ab+13\)
\(B=\left(a-\dfrac{b}{2}-\dfrac{5}{2}\right)^2+\dfrac{3}{4}b^2+\dfrac{9}{2}b+\dfrac{27}{4}\ge\dfrac{27}{4}\)
Đẳng thức xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}a=\dfrac{5}{2}\\b=0\end{matrix}\right.\), tức là \(x=\dfrac{-3}{2}\) và \(y=\dfrac{9}{2}\)
Vậy B đạt GTNN bằng \(\dfrac{27}{2}\) khi \(x=-\dfrac{3}{2}\) và \(y=\dfrac{9}{2}\).
1. Áp dụng bất đẳng thức \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) với \(a=x^3+3xy^2,b=y^3+3x^2y\) (a;b > 0)
(Bất đẳng thức này a;b > 0 mới dùng được)
\(A\ge\frac{4}{x^3+3xy^2+y^3+3x^2y}=\frac{4}{\left(x+y\right)^3}\ge\frac{4}{1^3}=4\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}x^3+3xy^2=y^3+3x^2y\\x+y=1\end{cases}\Leftrightarrow\hept{\begin{cases}x^3-3x^2y+3xy^2-y^3=0\\x+y=1\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(x-y\right)^3=0\\x+y=1\end{cases}}\Leftrightarrow x=y=\frac{1}{2}\)
3x - 4y = 10
=> 3x = 10 + 4y => x = (10 + 4y) /3
thay vào A:
\(A=\left(\frac{10+4y}{3}\right)^2+y^2=\frac{100+80y+16y^2}{9}+y^2=\frac{100+80y+25y^2}{9}=\frac{\left(5y+8\right)^2}{9}+4\)
có: \(\frac{\left(5y+8\right)^2}{9}\ge0\Rightarrow\)\(A=\frac{\left(5y+8\right)^2}{9}+4\ge4\)
vậy giá trị nhỏ nhất của A là 4
Cho \(x>0,y>0\)thỏa mãn\(x+y\le1\)
Tìm giá trị nhỏ nhất của: \(P=\frac{1}{x^2+y^2}+\frac{2}{xy}+4xy\)
\(P=\frac{1}{x^2+y^2}+\frac{2}{xy}+4xy=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\left(\frac{1}{4xy}+4xy\right)+\frac{5}{4xy}\)
\(\ge\frac{4}{x^2+y^2+2xy}+2\sqrt{\frac{1}{4xy}.4xy}+\frac{5}{4.\frac{\left(x+y\right)^2}{4}}\)
\(=4+2+5=11\)
Dấu "=" xảy ra khi x = y = \(\frac{1}{2}\)
2. Có hai cách nhé
Cách 1: P = xy(x - 2)(y + 6) + 12x² - 24x + 3y² + 18y + 36
--> P = xy(x - 2)(y + 6) + 12x(x - 2) + 3y(y + 6) + 36
--> P = [ 12x(x - 2) + 36 ] + xy(x - 2)(y + 6) + 3y(y + 6)
--> P = 12[x(x - 2) + 3] + y(y + 6).[x(x - 2) + 3]
--> P = [x(x - 2) + 3].[y(y + 6) + 12]
--> P = (x² - 2x + 3)(y² + 6y + 12)
--> P = [(x - 1)² + 2].[(y + 3)² + 3] ≥ 2.3 = 6 > 0
Dấu " = " xảy ra ⇔ x = 1 ; y = -3
Vậy MinP = 6 ⇔ x = 1 ; y = -3
Cách 2: P = xy(x - 2)(y + 6) + 12x² - 24x + 3y² + 18y + 36
--> P = xy(x - 2)(y + 6) + 12x(x - 2) + 3(y + 3)² + 9
--> P = x(x - 2)[y(y - 6) + 12] + 3(y + 3)² +9
--> P = x(x - 2)[(y + 3)² + 3] + 3(y + 3)² + 9
--> P = x(x - 2)(y + 3)² + 3x(x - 2) + 3(y + 3)² + 9
--> P = (y + 3)²[x(x - 2) + 3] + 3x(x - 2) + 9
--> P = (y + 3)²[(x - 1)² + 2] + 3x² - 6x + 9
--> P = (y + 3)²(x - 1)² + 2(y + 3)² + 3(x - 1)² + 6 ≥ 6
Dấu " = " xảy ra ⇔ x = 1 ; y = -3
Vậy MinP = 6 ⇔ x = 1 ; y = -3
P/S: MinP = 6 > 0 ∀ x, y ∈ R --> P luôn dương ∀ x, y ∈ R
Mình nghĩ phần CM: "P luôn dương với mọi x,y thuộc R." là hơi thừa :-)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Ta có : \(\frac{x^2}{y^2}+\frac{y^2}{x^2}+4\ge3\left(\frac{x}{y}+\frac{y}{x}\right)\) (*)
\(\Leftrightarrow\frac{x^2}{y^2}+2.\frac{x}{y}.\frac{y}{x}+\frac{y^2}{x^2}-3\left(\frac{x}{y}+\frac{y}{x}\right)+2\ge0\)
\(\Leftrightarrow\left(\frac{x}{y}+\frac{y}{x}\right)^2-3\left(\frac{x}{y}+\frac{y}{x}\right)+2\ge0\) (**)
Đặt \(\frac{x}{y}+\frac{y}{x}=t\Rightarrow t\ge2\sqrt{\frac{x}{y}.\frac{y}{x}}=2\)
Vậy thì \(\left(\frac{x}{y}+\frac{y}{x}\right)^2-3\left(\frac{x}{y}+\frac{y}{x}\right)+2=t^2-3t+2=\left(t-\frac{3}{2}\right)^2-\frac{1}{4}\)
\(\ge\left(2-\frac{3}{2}\right)^2-\frac{1}{4}=0\)
Vậy bất đẳng thức (**) đúng hay bất đẳng thức (*) đúng