\(x\ge0\)

A=\(\frac{1}{\sqrt{x^2-2\sqrt{x}+10}}\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2016

\(A=\frac{1}{\sqrt{\left(\sqrt{x}-1\right)^2+9}}\le\frac{1}{3}\)

MaxA= 1/3  khi x =1

17 tháng 10 2019

\(a,x=7-4\sqrt{3}=4-2.2\sqrt{3}+3\) (Thỏa mãn ĐKXĐ)

\(=\left(2-\sqrt{3}\right)^2\)

\(B=\frac{2}{\sqrt{x}-2}=\frac{2}{\sqrt{\left(2-\sqrt{3}\right)^2}-2}\)

\(=\frac{2}{2-\sqrt{3}-2}=-\frac{2\sqrt{3}}{3}\)

\(b,P=\frac{B}{A}=\frac{2}{\sqrt{x}-2}:\left(\frac{\sqrt{x}}{x-4}+\frac{1}{\sqrt{x}-2}\right)\)

\(=\frac{2}{\sqrt{x}-2}:\left(\frac{\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right)\)

\(=\frac{2}{\sqrt{x}-2}:\frac{\sqrt{x}+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{2}{\sqrt{x}-2}:\frac{2\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{2}{\sqrt{x}-2}.\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{2\left(\sqrt{x}+1\right)}\)

\(=\frac{\sqrt{x}+2}{\sqrt{x}+1}\)

17 tháng 10 2019

\(P=\frac{4}{3}\Rightarrow\frac{\sqrt{x}+2}{\sqrt{x}+1}=\frac{4}{3}\)

\(\Leftrightarrow3\left(\sqrt{x}+2\right)=4\left(\sqrt{x}+1\right)\)

\(\Leftrightarrow3\sqrt{x}+6=4\sqrt{x}+4\)

\(\Leftrightarrow6-4=4\sqrt{x}-3\sqrt{x}\)

\(\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\)(ko thỏa mãn ĐKXĐ)

=>pt vo nghiệm

d,\(\left(\sqrt{x}+1\right)P-\sqrt{x}-4\sqrt{x-1}+26=-6x+10\sqrt{5x}\)

\(\Leftrightarrow\left(\sqrt{x}+1\right)\frac{\sqrt{x}+2}{\sqrt{x}+1}-\sqrt{x}-4\sqrt{x-1}+26=-6x+10\sqrt{5x}\)

\(\Leftrightarrow\sqrt{x}+2-\sqrt{x}-4\sqrt{x-1}+26=-6x+10\sqrt{5x}\)

\(\Leftrightarrow-4\sqrt{x-1}+28=-6x+10\sqrt{5x}\)

\(\Leftrightarrow x=5\)

5 tháng 9 2020

a) \(2\sqrt{3x}-4\sqrt{3x}+27-2\sqrt{3x}=27-4\sqrt{3x}\)

b) \(3\sqrt{2x}-5\sqrt{8x}+7\sqrt{8x}+28=3\sqrt{2x}+2\sqrt{8x}+28=3\sqrt{2x}+4\sqrt{2x}+28=7\sqrt{2x}+28\)

c) \(\frac{2}{x^2-y^2}\sqrt{\frac{3\left(x+y\right)^2}{2}}=\frac{2}{\left(x-y\right)\left(x+y\right)}.\frac{\sqrt{3}\left|x+y\right|}{\sqrt{2}}=\frac{\sqrt{6}}{x-y}\)

d) \(\frac{2}{2a-1}\sqrt{5a^2\left(1-4x+4a^2\right)}=\frac{2}{2a-1}\sqrt{5a^2\left(2a-1\right)^2}=\frac{2}{2a-1}.\sqrt{5}\left|a\left(2a-1\right)\right|=2a\sqrt{5}\)

Thiếu ĐKXĐ : ..............

5 tháng 9 2020

a) Ta có: \(2\sqrt{3x}-4\sqrt{3x}+27-2\sqrt{3x}\)

        \(=27-4\sqrt{3x}\)

b) Ta có: \(3\sqrt{2x}-5\sqrt{8x}+7\sqrt{8x}+28\)

        \(=3\sqrt{2x}-5.2\sqrt{2x}+7.2\sqrt{2x}+28\)

        \(=3\sqrt{2x}-10\sqrt{2x}+14\sqrt{2x}+28\)

        \(=7\sqrt{2x}+28\)

c) Ta có: \(\frac{2}{x^2-y^2}.\sqrt{\frac{3\left(x+y\right)^2}{2}}\)

        \(=\sqrt{\frac{4}{\left(x-y\right)^2.\left(x+y\right)^2}.\frac{3\left(x+y\right)^2}{2}}\)

        \(=\sqrt{\frac{2.3}{\left(x-y\right)^2}}\)

        \(=\frac{1}{x-y}.\sqrt{6}\)

d) Ta có: \(\frac{2}{2a-1}.\sqrt{5a^2.\left(1-4a+4a^2\right)}\)

        \(=\sqrt{\frac{4}{\left(2a-1\right)^2}.5a^2.\left(2a-1\right)^2}\)

        \(=2a.\sqrt{5}\)

26 tháng 5 2018

a/ Ta có: \(x+2\sqrt{x}+1=\left(\sqrt{x}+1\right)^2\)

Và: \(x-1=\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)\)

=> \(P=\left[\frac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}-\frac{\sqrt{x}-2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right].\frac{\sqrt{x}+1}{\sqrt{x}}\)

=> \(P=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2.\left(\sqrt{x}-1\right)}.\frac{\sqrt{x}+1}{\sqrt{x}}\)

=> \(P=\frac{x+2\sqrt{x}-\sqrt{x}-2-x-\sqrt{x}+2\sqrt{x}+2}{\left(\sqrt{x}+1\right).\left(\sqrt{x}-1\right)}.\frac{1}{\sqrt{x}}=\frac{2\sqrt{x}}{\left(\sqrt{x}+1\right).\left(\sqrt{x}-1\right)}.\frac{1}{\sqrt{x}}\)

=> \(P=\frac{2}{\left(\sqrt{x}+1\right).\left(\sqrt{x}-1\right)}=\frac{2}{x-1}\)

b/ Thay \(x=\frac{\sqrt{3}}{2+\sqrt{3}}\)  => \(P=\frac{2}{\frac{\sqrt{3}}{2+\sqrt{3}}-1}=\frac{2\left(2+\sqrt{3}\right)}{\sqrt{3}-2-\sqrt{3}}\)

=> \(P=-\left(2+\sqrt{3}\right)\)

c/ \(P=\frac{2}{x-1}=-\frac{4}{\sqrt{x}+1}\) <=> \(\frac{1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=-\frac{2}{\sqrt{x}+1}\)

<=> \(\frac{1}{\sqrt{x}-1}=-2\)

<=> \(1=-2\sqrt{x}+2\)

<=> \(2\sqrt{x}=1=>\sqrt{x}=\frac{1}{2}=>x=\frac{1}{4}\)

29 tháng 10 2020

ĐKXĐ của cả A và B : \(\hept{\begin{cases}x\ge0\\x\ne25\end{cases}}\)

\(A=\frac{\sqrt{x}+2}{\sqrt{x}-5}\)

\(B=\frac{x+3\sqrt{x}}{x-25}+\frac{1}{\sqrt{x}+5}\)

\(=\frac{x+3\sqrt{x}}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}+\frac{\sqrt{x}-5}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}\)

\(=\frac{x+4\sqrt{x}-5}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}=\frac{x-\sqrt{x}+5\sqrt{x}-5}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}-1\right)+5\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+5\right)}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}\)

\(=\frac{\sqrt{x}-1}{\sqrt{x}-5}\)

\(M=\frac{B}{A}=\frac{\frac{\sqrt{x}-1}{\sqrt{x}-5}}{\frac{\sqrt{x}+2}{\sqrt{x}-5}}=\frac{\sqrt{x}-1}{\sqrt{x}-5}\times\frac{\sqrt{x}-5}{\sqrt{x}+2}=\frac{\sqrt{x}-1}{\sqrt{x}+2}\)

ĐKXĐ của M : \(\hept{\begin{cases}x\ge0\\x\ne25\end{cases}}\)

\(M\times\left(\sqrt{x}+2\right)\ge3x-3\)

\(\Leftrightarrow\frac{\sqrt{x}-1}{\sqrt{x}+2}\times\left(\sqrt{x}+2\right)\ge3x-3\)( ĐK : \(\hept{\begin{cases}x\ge0\\x\ne25\end{cases}}\))

\(\Leftrightarrow\sqrt{x}-1\ge3x-3\)

\(\Leftrightarrow3x-\sqrt{x}-3+1\ge0\)

\(\Leftrightarrow3x-\sqrt{x}-2\ge0\)

\(\Leftrightarrow3x-3\sqrt{x}+2\sqrt{x}-2\ge0\)

\(\Leftrightarrow3\sqrt{x}\left(\sqrt{x}-1\right)+2\left(\sqrt{x}-1\right)\ge0\)

\(\Leftrightarrow\left(\sqrt{x}-1\right)\left(3\sqrt{x}+2\right)\ge0\)

Dễ dàng nhận thấy \(3\sqrt{x}+2\ge2>0\forall x\ge0\)

\(\Rightarrow\sqrt{x}-1\ge0\)

\(\Leftrightarrow x\ge1\)

Kết hợp với điều kiện => Với 0 ≤ x ≤ 1 thì thỏa mãn đề bài

2 tháng 6 2019

\(A=\)\(\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}+\frac{1}{1-\sqrt{x}}\)

   \(=\frac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\) \(\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(x+\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\) \(-\frac{\sqrt{x}+x+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+x+1\right)}\)

   \(=\frac{x+2+x-1-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

    =   \(\frac{x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(=\frac{\sqrt{x}}{\sqrt{x}+x+1}\)

học tốt

2 tháng 6 2019

\(A=\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}+\frac{1}{1-\sqrt{x}}\)

\(A=\frac{x+2}{\sqrt{x}^3-1^3}+\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\frac{-1\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(A=\frac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\frac{x-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\frac{-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(A=\frac{x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(A=\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\frac{\sqrt{x}}{x+\sqrt{x}+1}\)

Ta có : x + 1 \(\ge\)\(2\sqrt{x}\)nên \(x+\sqrt{x}+1\ge3\sqrt{x}\)

\(\Rightarrow A=\frac{\sqrt{x}}{x+\sqrt{x}+1}\le\frac{\sqrt{x}}{3\sqrt{x}}=\frac{1}{3}\)

Vậy GTLN của A là \(\frac{1}{3}\)\(\Leftrightarrow x=1\)

10 tháng 10 2020

Đề bài này be bét quá, xin phép sửa lại

a) đk: \(\hept{\begin{cases}x\ge0\\x\ne\left\{1;4\right\}\end{cases}}\)

\(P=\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{2\sqrt{x}-1}{\sqrt{x}-1}+\frac{x-2}{x-3\sqrt{x}+2}\)

\(P=\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{2\sqrt{x}-1}{\sqrt{x}-1}+\frac{x-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\)

\(P=\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)-\left(2\sqrt{x}-1\right)\left(\sqrt{x}-2\right)+x-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\)

\(P=\frac{x-4\sqrt{x}+3-2x+3\sqrt{x}-2+x-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\)

\(P=\frac{-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\)

10 tháng 10 2020

b) Ta có: \(P< 1\)

\(\Leftrightarrow-\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}< 0\)

Mà \(\sqrt{x}+1\ge1>0\left(\forall x\right)\)

\(\Rightarrow\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)>0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}-1< 0\\\sqrt{x}-2>0\end{cases}}\Leftrightarrow\orbr{\begin{cases}0\le x< 1\\x>4\end{cases}}\)