Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho \(xy=1\)và \(x,y>0\)
Tìm \(M_{max}=\frac{x}{x^4+y^2}+\frac{y}{x^2+y^4}\)
\(M=\frac{x}{x^4+\frac{1}{x^2}}+\frac{x}{y^2+\frac{1}{y^2}}\)
\(M=\frac{x^4}{x^6+1}+\frac{y^3}{y^6+1}\)
Áp dụng BĐT Cauchy
\(x^6+1\ge2x^3=>\frac{x^2}{x^6+1}\le\frac{1}{2}\)
Tương tự \(\frac{y^3}{y^6+1}\le\frac{1}{2}\)
\(=>M\le1\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}xy=1\\x=1\\y=1\end{cases}}\Leftrightarrow x=y=1\)
Vậy \(M_{max}=1\)khi \(x=y=1\)
Bằng bước biến đổi \(P=\frac{\left(x+y\right)^2+xy}{\sqrt{xy}.\left(x+y\right)}\)ta có cách giải sau
Áp dụng Bất đẳng thức AM-GM,ta có: \(P=\frac{\left(x+y\right)^2+xy}{\sqrt{xy}.\left(x+y\right)}\ge\frac{2\sqrt{xy}\left(x+y\right)}{\sqrt{xy}\left(x+y\right)}=2\)
Vậy giá trị nhỏ nhất của P là 2 đạt được khi \(\left(x+y\right)^2=xy\Leftrightarrow x^2+xy+y^2=0\)
Cơ mà nếu vậy thì P không có giá trị nhỏ nhất à, hay là em làm sai
Đổi tên biểu thức thành M cho nó đỡ nhầm lẫn với cách phần đặt biến phụ nha!
Biểu thức đối xứng 2 biến x, y là em nghĩ đến cách đặt \(S=x+y;P=xy\Rightarrow S^2\ge4P\).(đẳng thức xảy ra khi x = y)
Có: \(M=\frac{S^2+P}{S\sqrt{P}}=\frac{S}{\sqrt{P}}+\frac{\sqrt{P}}{S}\). Đặt \(t=\frac{S}{\sqrt{P}}=\sqrt{\frac{S^2}{P}}\ge\sqrt{\frac{4P}{P}}=2\). Quy về tìm min biểu thức:
\(M=t+\frac{1}{t}\left(t\ge2\right)\). Đến đây có 2 cách:
+) Cách 1: \(t+\frac{1}{t}=\frac{t}{4}+\frac{1}{t}+\frac{3t}{4}\ge2\sqrt{\frac{t}{4}.\frac{1}{t}}+\frac{3.2}{4}=\frac{5}{2}\)
Đẳng thức xảy ra khi ... (anh tự giải nhá:3)
+) Cách 2: \(t+\frac{1}{t}=t+\frac{4}{t}-\frac{3}{t}\ge2\sqrt{t.\frac{4}{t}}-\frac{3}{2}=\frac{5}{2}\)
Vậy...
Ta có: \(x \geqslant xy+1 \Rightarrow x-1 \geqslant xy\)
\( P = \dfrac{{3xy}}{{{x^2} + {y^2}}} = \dfrac{{3\left( {x - 1} \right)y + 3y}}{{{x^2} + {y^2}}}\\ \le \dfrac{{3x{y^2} + 3y}}{{2xy}} = \dfrac{{3y\left( {x + 3} \right)}}{{2xy}}\\ = \dfrac{{3\left( {x + 3} \right)}}{{2x}} = \dfrac{3}{2} + \dfrac{3}{{2x}} \le 2.\dfrac{3}{2} = 3\\ \Rightarrow {P_{\max }} = 3 \)
Nếu \(xy\le0\Rightarrow M\le0;\) nếu \(xy>0\Rightarrow M>0\Rightarrow\) GTLN nếu có của M sẽ xảy ra khi \(xy>0\)
Xét \(xy>0\Rightarrow xy+1>0\Rightarrow x>0\Rightarrow y>0\)
\(x\ge xy+1\Leftrightarrow1\ge y+\frac{1}{x}\ge2\sqrt{\frac{y}{x}}\Rightarrow\frac{y}{x}\le\frac{1}{4}\) \(\Rightarrow\frac{x}{y}\ge4\)
\(M=\frac{3xy}{x^2+y^2}=\frac{3}{\frac{x}{y}+\frac{y}{x}}=\frac{3}{\frac{15}{16}.\frac{x}{y}+\frac{x}{16y}+\frac{y}{x}}\le\frac{3}{\frac{15}{16}.4+2\sqrt{\frac{xy}{16yx}}}=\frac{12}{17}\)
\(\Rightarrow M_{max}=\frac{12}{17}\) khi \(\left\{{}\begin{matrix}x=2\\y=\frac{1}{2}\end{matrix}\right.\)