\(x=\frac{b^2+c^2+a^2}{2ab}\)\(y=\frac{a^2-\left(b-c\right)^2}{\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
22 tháng 2 2020

Lời giải:

a) \(\frac{x^2-16}{4x-x^2}=\frac{(x-4)(x+4)}{x(4-x)}=\frac{x+4}{-x}\)

b) \(\frac{5(x-y)-3(y-x)}{10(x-y)}=\frac{5(x-y)+3(x-y)}{10(x-y)}=\frac{8(x-y)}{10(x-y)}=\frac{8}{10}=\frac{4}{5}\)

c)

\(\frac{(x+y)^2-z^2}{x+y+z}=\frac{(x+y-z)(x+y+z)}{x+y+z}=x+y-z\)

d)

Biểu thức không rút gọn được

e)

\(\frac{a^3+b^3+c^3}{a^2+b^2+c^2-ab-bc-ac}=\frac{(a+b)^3-3ab(a+b)+c^3}{a^2+b^2+c^2-ab-bc-ac}=\frac{(a+b+c)[(a+b)^2-c(a+b)+c^2]-3ab(a+b)}{a^2+b^2+c^2-ab-bc-ac}\)

\(=\frac{(a+b+c)(a^2+b^2+c^2-ac-bc+2ab)-3ab(a+b+c)+3abc}{a^2+b^2+c^2-ab-bc-ac}\)

\(=\frac{(a+b+c)(a^2+b^2+c^2-ab-bc-ac)+3abc}{a^2+b^2+c^2-ab-bc-ac}=a+b+c+\frac{3abc}{a^2+b^2+c^2-ab-bc-ac}\)

23 tháng 2 2020

thanhk you very much

Bài 1.Cho \(x+y+z=0\)Tính \(S=\frac{x^2+y^2+z^2}{\left(y-z\right)^2+\left(z-x\right)^2+\left(x-y\right)^2}\)Bài 2. Cho \(a+b+c=1;a^2+b^2+c^2=1;\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)CMR: \(xy+yz+zx=0\)Bài 3. Cho \(3x-y=2z\)                \(2x+y=7z\)Tính \(S=\frac{x^2-2xy}{x^2+y^2}\)với \(x,y\ne0\)Bài 4. Cho \(a,b,c\ne0\)thỏa mãn \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)Tính \(E=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)Bài 5....
Đọc tiếp

Bài 1.Cho \(x+y+z=0\)

Tính \(S=\frac{x^2+y^2+z^2}{\left(y-z\right)^2+\left(z-x\right)^2+\left(x-y\right)^2}\)

Bài 2. Cho \(a+b+c=1;a^2+b^2+c^2=1;\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)

CMR: \(xy+yz+zx=0\)

Bài 3. Cho \(3x-y=2z\)

                \(2x+y=7z\)

Tính \(S=\frac{x^2-2xy}{x^2+y^2}\)với \(x,y\ne0\)

Bài 4. Cho \(a,b,c\ne0\)thỏa mãn \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)

Tính \(E=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)

Bài 5. Cho \(abc\ne0\)thỏa mãn: \(2ab+6bc+2ac=0\)

Tính \(A=\frac{\left(a+2b\right)\left(2b+3c\right)\left(3c+a\right)}{6abc}\)

Bài 6. Cho \(a,b,c\ne0\)thỏa mãn \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)

Tính \(Y=\frac{a^2b^2c^2}{a^2b^2+b^2c^2-c^2a^2}+\frac{a^2b^2c^2}{b^2c^2+c^2a^2-a^2b^2}+\frac{a^2b^2c^2}{c^2a^2+a^2b^2-b^2c^2}\)

Bài 7. Cho \(\hept{\begin{cases}10a^2-3b^2+5ab=0\\9a^2-b^2\ne0\end{cases}}\)

Tính \(B=\frac{2a-b}{3a-b}+\frac{5b-a}{3a+b}\)

6
15 tháng 2 2019

làm nổi à bạn. 

15 tháng 2 2019

1. Ta có : x + y + z = 0 \(\Rightarrow\)( x + y + z )2 = 0 \(\Rightarrow\)x2 + y2 + z2 = - 2 ( xy + yz + xz )\(S=\frac{x^2+y^2+z^2}{\left(y-z\right)^2+\left(z-x\right)^2+\left(x-y\right)^2}=\frac{-2\left(xy+yz+xz\right)}{2\left(x^2+y^2+z^2\right)-2\left(yz+xz+xy\right)}\)

\(S=\frac{-2\left(xy+yz+xz\right)}{-4\left(xy+yz+xz\right)-2\left(yz+xz+xy\right)}=\frac{-2\left(xy+yz+xz\right)}{-6\left(xy+yz+xz\right)}=\frac{1}{3}\)

10 tháng 2 2019

Ta có

x+1=b2+c2a22bc+1=b2+2bc+c2a22bc=(b+c)2a22bcx+1=b2+c2−a22bc+1=b2+2bc+c2−a22bc=(b+c)2−a22bc

Suy ra

y(x+1)=a2(bc)2(b+c)2a2.(b+c)2a22bc=a2(bc)22bcy(x+1)=a2−(b−c)2(b+c)2−a2.(b+c)2−a22bc=a2−(b−c)22bc

Do đó

P=x+y+xy=x+y(x+1)=b2+c2a22bc+a2(bc)22bc=b2+c2a2+a2(bc)22bc=1

12 tháng 3 2017

Làm như bạn trên hướng dẫn ấy:

Ta có: \(x+1=\frac{b^2+c^2-a^2}{2bc}+1=\frac{\left(b+c\right)^2-a^2}{2bc}\)

\(y+1=\frac{a^2-\left(b-c\right)^2}{\left(b+c\right)^2-a^2}+1=\frac{4bc}{\left(b+c\right)^2-a^2}\)

\(\Rightarrow\left(x+1\right)\left(y+1\right)=\frac{\left(b+c\right)^2-a^2}{2bc}.\frac{4bc}{\left(b+c\right)^2-a^2}=2\)

\(\Rightarrow P=\left(x+1\right)\left(y+x\right)-1=2-1=1\)

10 tháng 3 2017

Bạn tính x+1 và y+1 

Rồi nhân vào sẽ ra kết quả là 1

k cho mình nha!