\(\frac{1}{\sqrt[3]{3-2\sqrt{2}}}+\sqrt[3]{3-2\sqrt{2}}\)

Không dùng máy tính...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
24 tháng 10 2019

a/ ĐKXĐ: \(x\ge2\)

\(\Leftrightarrow2\sqrt{\left(x-2\right)\left(x+2\right)}-6\sqrt{x-2}+\sqrt{x+2}-3=0\)

\(\Leftrightarrow2\sqrt{x-2}\left(\sqrt{x+2}-3\right)+\sqrt{x+2}-3=0\)

\(\Leftrightarrow\left(2\sqrt{x-2}+1\right)\left(\sqrt{x+2}-3\right)=0\)

\(\Leftrightarrow\sqrt{x+2}-3=0\Rightarrow x=11\)

b/ ĐKXĐ: ....

Đặt \(\left\{{}\begin{matrix}\sqrt{x-2016}=a>0\\\sqrt{y-2017}=b>0\\\sqrt{z-2018}=a>0\end{matrix}\right.\)

\(\frac{a-1}{a^2}+\frac{b-1}{b^2}+\frac{c-1}{c^2}=\frac{3}{4}\)

\(\Leftrightarrow\frac{1}{4}-\frac{a-1}{a^2}+\frac{1}{4}-\frac{b-1}{b^2}+\frac{1}{4}-\frac{c-1}{c^2}=0\)

\(\Leftrightarrow\frac{\left(a-2\right)^2}{a^2}+\frac{\left(b-2\right)^2}{b^2}+\frac{\left(c-2\right)^2}{c^2}=0\)

\(\Leftrightarrow a=b=c=2\Rightarrow\left\{{}\begin{matrix}x=2020\\y=2021\\z=2022\end{matrix}\right.\)

NV
24 tháng 10 2019

a/ ĐK: \(x\ge0\)

\(\Leftrightarrow\sqrt{3+x}=x^2-3\)

Đặt \(\sqrt{3+x}=a>0\Rightarrow3=a^2-x\) pt trở thành:

\(a=x^2-\left(a^2-x\right)\)

\(\Leftrightarrow x^2-a^2+x-a=0\)

\(\Leftrightarrow\left(x-a\right)\left(x+a+1\right)=0\)

\(\Leftrightarrow x=a\) (do \(x\ge0;a>0\))

\(\Leftrightarrow\sqrt{3+x}=x\Leftrightarrow x^2-x-3=0\)

d/ ĐKXĐ: ...

\(\sqrt{6x^2+1}=\sqrt{2x-3}+x^2\)

\(\Leftrightarrow\sqrt{2x-3}-1+x^2+1-\sqrt{6x^2+1}\)

\(\Leftrightarrow\frac{2\left(x-2\right)}{\sqrt{2x-3}+1}+\frac{x^4+2x^2+1-6x^2-1}{\left(x^2+1\right)^2+\sqrt{6x^2+1}}=0\)

\(\Leftrightarrow\frac{2\left(x-2\right)}{\sqrt{2x-3}+1}+\frac{x^2\left(x+2\right)\left(x-2\right)}{\left(x^2+1\right)^2+\sqrt{6x^2+1}}=0\)

\(\Leftrightarrow\left(x-2\right)\left(\frac{2}{\sqrt{2x-3}+1}+\frac{x^2\left(x+2\right)}{\left(x^2+1\right)^2+\sqrt{6x^2+1}}\right)=0\)

\(\Leftrightarrow x=2\) (phần trong ngoặc luôn dương với mọi \(x\ge\frac{3}{2}\))

NV
10 tháng 8 2020

3.

ĐKXĐ: \(x\ge-1;x\ne13\)

\(\left(x+2\right)\left(\sqrt{x+1}-2\right)=\sqrt[3]{2x+1}-3\)

\(\Leftrightarrow\left(x+2\right)\sqrt{x+1}-2x-4=\sqrt[3]{2x+1}-3\)

\(\Leftrightarrow\left(x+1\right)\sqrt{x+1}+x+1-\left(2x+1\right)-\sqrt[3]{2x+1}=0\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x+1}=a\\\sqrt[3]{2x+1}=b\end{matrix}\right.\)

\(\Rightarrow a^3+a-b^3-b=0\)

\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2+1\right)=0\)

\(\Leftrightarrow a=b\)

\(\Leftrightarrow\sqrt{x+1}=\sqrt[3]{2x+1}\) (\(x\ge-\frac{1}{2}\))

\(\Leftrightarrow\left(x+1\right)^3=\left(2x+1\right)^2\)

\(\Leftrightarrow x=?\)

NV
10 tháng 8 2020

2.

ĐKXĐ: \(x\ge-\frac{1}{2}\)

\(\Leftrightarrow8x^3+2x-\left(2x+2\right)\sqrt{2x+1}=0\)

Đặt \(\left\{{}\begin{matrix}2x=a\\\sqrt{2x+1}=b\end{matrix}\right.\)

\(\Rightarrow a^3+a-\left(b^2+1\right)b=0\)

\(\Leftrightarrow a^3-b^3+a-b=0\)

\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2+1\right)=0\)

\(\Leftrightarrow a=b\)

\(\Leftrightarrow2x=\sqrt{2x+1}\) (\(x\ge0\))

\(\Leftrightarrow4x^2=2x+1\)

\(\Leftrightarrow x=?\)

29 tháng 11 2019

a/\(\sqrt{x^2-2x}=\sqrt{2-3x}\left(đk:x\le0\right) \)
\(\Leftrightarrow x^2-2x=2-3x\)
\(\Leftrightarrow x^2+x-2=0\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(KTM\right)\\x=-2\left(TM\right)\end{matrix}\right.\)
Vậy x=-2 là nghiệm của PT
b/\(\sqrt{x-3}-2\sqrt{x^2-9}=0\left(đk:x\ge3\right)\)
\(\Leftrightarrow\sqrt{x-3}\left(1-2\sqrt{x+3}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-3}=0\\1=2\sqrt{x+3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\left(TM\right)\\4x+12=1\end{matrix}\right.\Leftrightarrow}\left[{}\begin{matrix}x=3\\x=-\frac{11}{4}\left(KTM\right)\end{matrix}\right.\)

Vậy x=3

4 tháng 10 2018

ta có : \(a=\sqrt{2}+\sqrt{7-\sqrt[3]{61+46\sqrt{5}}}-1\)

\(=\sqrt{2}+\sqrt{7-\sqrt[3]{\left(1+2\sqrt{5}\right)^3}}-1=\sqrt{2}+\sqrt{7-1-2\sqrt{5}}-1\)

\(=\sqrt{2}+\sqrt{\left(\sqrt{5}-1\right)^2}-1=\sqrt{2}+\sqrt{5}-1-1\)

\(=\sqrt{2}+\sqrt{5}-2\)

thế vào máy \(\Rightarrow\) đề sai .

14 tháng 6 2022

kia phải là dấu +1 thì đề mới đúng

 

17 tháng 8 2019

1 + 1=

Ai có nhu cầu tình dục cao thì liên hẹ vs e nha, e làm cho, 20k thôi, e cần tiền chữa bệnh cho mẹ

9 tháng 6 2019

a/ ĐKXĐ: \(x\ge\frac{-5}{7}\)

\(\Leftrightarrow9x-7=7x+5\Leftrightarrow x=6\)(thoả mãn)

b/ ĐKXĐ:....

\(\Leftrightarrow2x^2-3=4x-3\Leftrightarrow\left[{}\begin{matrix}x=2\left(thoảman\right)\\x=0\left(loai\right)\end{matrix}\right.\)

c/ ĐKXĐ:...

\(\Leftrightarrow\frac{2x-3}{x-1}=4\Leftrightarrow2x-3=4x-4\Leftrightarrow x=\frac{1}{2}\)(thoả mãn)

d/ giống câu c nhưng đkxđ khác và nó vô no

24 tháng 8 2019

a, \(5\sqrt{2x^2+3x+9}=2x^2+3x+3\) (*)

Đặt \(2x^2+3x=a\left(a\ge-9\right)\)

=> \(5\sqrt{a+9}=a+3\)

<=> \(25\left(a+9\right)=a^2+6a+9\)

<=> \(25a+225=a^2+6a+9\)

<=> \(0=a^2+6a+9-25a-225=a^2-19a-216\)

<=> 0= \(a^2-27a+8a-216\)

<=> \(\left(a-27\right)\left(a+8\right)=0\)

=> \(\left[{}\begin{matrix}a=27\\a=-8\end{matrix}\right.\) <=>\(\left[{}\begin{matrix}2x^2+3x=27\\2x^2+3x=-8\end{matrix}\right.\)<=> \(\left[{}\begin{matrix}2x^2+3x-27=0\\2x^2+3x+8=0\end{matrix}\right.\)<=> \(\left[{}\begin{matrix}\left(x-3\right)\left(2x+9\right)=0\\2\left(x^2+2.\frac{3}{4}+\frac{9}{16}\right)+\frac{55}{8}=0\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}x=3\left(tm\right)\\x=-\frac{9}{2}\left(tm\right)\\2\left(x+\frac{3}{4}\right)^2=-\frac{55}{8}\left(ktm\right)\end{matrix}\right.\)

Vậy pt (*) có tập nghiệm \(S=\left\{3,-\frac{9}{2}\right\}\)

b, \(9-\sqrt{81-7x^3}=\frac{x^3}{2}\left(đk:x\le\sqrt[3]{\frac{81}{7}}\right)\)(*)

<=> \(\sqrt{81-7x^3}=9-\frac{x^3}{2}\)

<=>\(81-7x^3=\left(9-\frac{x^3}{2}\right)^2=81-9x^3+\frac{x^6}{4}\)

<=> \(-7x^3+9x^3-\frac{x^6}{4}=0\) <=> \(2x^3-\frac{x^6}{4}=0\)<=> \(8x^3-x^6=0\)

<=> \(x^3\left(8-x^2\right)=0\)

=> \(\left[{}\begin{matrix}x=0\\8=x^2\end{matrix}\right.\)<=> \(\left[{}\begin{matrix}x=0\left(tm\right)\\x=\pm2\sqrt{2}\left(ktm\right)\end{matrix}\right.\)

Vậy pt (*) có nghiệm x=0

24 tháng 8 2019

d,\(\sqrt{9x-2x^2}-9x+2x^2+6=0\) (*) (đk: \(0\le x\le\frac{1}{2}\))

<=> \(\sqrt{9x-2x^2}-\left(9x-2x^2\right)+6=0\)

Đặt \(\sqrt{9x-2x^2}=a\left(a\ge0\right)\)

\(a-a^2+6=0\)

<=> \(a^2-a-6=0\) <=> \(a^2-3x+2x-6=0\)

<=> \(\left(a-3\right)\left(a+2\right)=0\)

=> \(a-3=0\) (vì a+2>0 vs mọi \(a\ge0\))

<=> a=3 <=>\(\sqrt{9x-2x^2}=3\) <=> \(9x-2x^2=9\)

<=> 0=\(2x^2-9x+9\) <=> \(2x^2-6x-3x+9=0\) <=>\(\left(2x-3\right)\left(x-3\right)=0\)

=> \(\left[{}\begin{matrix}2x=3\\x=3\end{matrix}\right.< =>\left[{}\begin{matrix}x=\frac{3}{2}\\x=3\end{matrix}\right.\)(t/m)

Vậy pt (*) có tập nghiệm \(S=\left\{\frac{3}{2},3\right\}\)