Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x = 0,7320508076
Thay x vào B ta được: ( x6 + 3x5 - 2x3 + x2 - 1 )2018
=0
Hk tốt
\(\sqrt{28-6\sqrt{3}}\)
\(=\sqrt{\left(3\sqrt{3}-1\right)^2}\)
\(=3\sqrt{3}-1\)
\(\sqrt{6-\sqrt{20}}\)
\(=\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(=\sqrt{5}-1\)
\(\sqrt{2x+3+2\sqrt{\left(x+1\right)\left(x+2\right)}}\)
\(=\sqrt{\left(\sqrt{x+2}+\sqrt{x+1}\right)^2}\)
\(=\sqrt{x+2}+\sqrt{x+1}\)
\(\sqrt{2x+2-2\sqrt{x^2+2x-3}}\)
\(=\sqrt{\left(x-1\right)-2\sqrt{\left(x-1\right)\left(x+3\right)}+\left(x+3\right)}\)
\(=\sqrt{\left(\sqrt{x+3}-\sqrt{x-1}\right)^2}\)
\(=\left|\sqrt{x+3}-\sqrt{x-1}\right|\)
\(\sqrt{21-6\sqrt{6}}+\sqrt{21+6\sqrt{6}}\)
\(=\sqrt{\left(3\sqrt{2}+\sqrt{3}\right)^2}+\sqrt{\left(3\sqrt{2}-\sqrt{3}\right)^2}\)
\(=3\sqrt{2}+\sqrt{3}+3\sqrt{2}-\sqrt{3}\)
\(=6\sqrt{2}\)
\(M=\left(\dfrac{x\sqrt{x}-1}{x-\sqrt{x}}-\dfrac{x\sqrt{x}+1}{x+\sqrt{x}}\right)\left(1-\dfrac{3-\sqrt{x}}{\sqrt{x}+1}\right)\)
\(=\left[\dfrac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}-\dfrac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\right]\)\(\left[\dfrac{\left(\sqrt{x}+1\right)-\left(3-\sqrt{x}\right)}{\sqrt{x}+1}\right]\)
\(=\left[\dfrac{\left(x+\sqrt{x}+1\right)-\left(x-\sqrt{x}+1\right)}{\sqrt{x}}\right]\times\dfrac{2\sqrt{x}-2}{\sqrt{x}+1}\)
\(=\dfrac{2\sqrt{x}\times2\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(=\dfrac{4\left(\sqrt{x}-1\right)}{\sqrt{x}+1}\)
b: \(\Leftrightarrow\left(x^2+5x+4\right)=5\sqrt{x^2+5x+28}\)
Đặt \(x^2+5x+4=a\)
Theo đề, ta có \(5\sqrt{a+24}=a\)
=>25a+600=a2
=>a=40 hoặc a=-15
=>x2+5x-36=0
=>(x+9)(x-4)=0
=>x=4 hoặc x=-9
c: \(\Leftrightarrow x^2+5x=2\sqrt[3]{x^2+5x-2}-2\)
Đặt \(x^2+5x=a\)
Theo đề, ta có: \(a=2\sqrt[3]{a}-2\)
\(\Leftrightarrow\sqrt[3]{8a}=a+2\)
=>(a+2)3=8a
=>\(a^3+6a^2+12a+8-8a=0\)
\(\Leftrightarrow a^3+6a^2+4a+8=0\)
Đến đây thì bạn chỉ cần bấm máy là xong
Em xin phép làm bài EZ nhất :)
4,ĐK :\(\forall x\in R\)
Đặt \(x^2+x+2=t\) (\(t\ge\dfrac{7}{4}\))
\(PT\Leftrightarrow\sqrt{t+5}+\sqrt{t}=\sqrt{3t+13}\)
\(\Leftrightarrow2t+5+2\sqrt{t\left(t+5\right)}=3t+13\)
\(\Leftrightarrow t+8=2\sqrt{t^2+5t}\)
\(\Leftrightarrow\left\{{}\begin{matrix}t\ge-8\\\left(t+8\right)^2=4t^2+20t\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}t\ge\dfrac{7}{4}\\3t^2+4t-64=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}t\ge\dfrac{7}{4}\\\left(t-4\right)\left(3t+16\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}t\ge\dfrac{7}{4}\\\left[{}\begin{matrix}t=4\left(tm\right)\\t=-\dfrac{16}{3}\left(l\right)\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow x^2+x+2=4\)\(\Leftrightarrow x^2+x-2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
Vậy ....
\(x=\dfrac{\sqrt{28-16\sqrt{3}}}{\sqrt{3}-1}=\dfrac{\sqrt{4}\sqrt{7-4\sqrt{3}}}{\sqrt{3}-1}\)
\(=\dfrac{2\sqrt{4-4\sqrt{3}+3}}{\sqrt{3}-1}=\dfrac{2\sqrt{\left(2-\sqrt{3}\right)^2}}{\sqrt{3}-1}\)
\(=\dfrac{2\left(2-\sqrt{3}\right)}{\sqrt{3}-1}=\dfrac{4-2\sqrt{3}}{\sqrt{3}-1}=\dfrac{3-2\sqrt{3}+1}{\sqrt{3}-1}\)
\(=\dfrac{\left(\sqrt{3}-1\right)^2}{\sqrt{3}-1}=\sqrt{3}-1\)
B=(x6+3x5-2x3+x2+2x-1)2018=(x6+x5+2x5+2x4-2x4-2x3+x2+2x+1-2)2018
=[(x+1)x5+2x4(x+1)-2x3(x+1)+(x+1)2-2]2018
mà ta có : x+1=\(\sqrt{3}-1+1=\sqrt{3}\)
=> B=\(\left[\sqrt{3}\left(x^5+2x^4-2x^3\right)+(\sqrt{3})^2-2\right]^{2018}\)
Ta có : x5+2x4-2x3=x3(x2+2x+1-3)=x3[(x-1)2 -3]=x3(3-3)=0
=>B=\(\left[\sqrt{3}.0+3-2\right]^{2018}=1^{2018}=1\)
Vậy .....