Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với điều kiện để x,y tồn tại:
Đặt t = b2 + c2 - a2 và k = 2bc
\(\Rightarrow x=\dfrac{t}{k}\) và \(y=\dfrac{k-t}{k+t}\)
P = \(\dfrac{t}{k}+\dfrac{k-t}{k+t}+\dfrac{t\left(k-t\right)}{k\left(k+t\right)}\) ( Quy đồng mẫu số và thu gọn )
\(\Rightarrow\) P = 1
Mấy bài này đăng nhiều rồi bạn ;v
Bài 1: Nhân cả 2 vế cho a+b+c rồi rút gọn được đpcm
Bài 2: Thêm 1 rồi bớt 1 :v (x+y+xy+1-1)
Lời giải :
\(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}=\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}\Leftrightarrow\dfrac{x^2}{a^2+b^2+c^2}-\dfrac{x^2}{a^2}+\dfrac{y^2}{a^2+b^2+c^2}-\dfrac{y^2}{b^2}+\dfrac{z^2}{a^2+b^2+c^2}-\dfrac{z^2}{c^2}=0\)
\(\Leftrightarrow x^2\left(\dfrac{1}{a^2+b^2+c^2}-\dfrac{1}{a^2}\right)+y^2\left(\dfrac{1}{a^2+b^2+c^2}-\dfrac{1}{b^2}\right)+z^2\left(\dfrac{1}{a^2+b^2+c^2}-\dfrac{1}{c^2}\right)=0\)
Do \(\dfrac{1}{a^2+b^2+c^2}-\dfrac{1}{a^2}\ne0;\dfrac{1}{a^2+b^2+c^2}-\dfrac{1}{b^2}\ne0;\dfrac{1}{a^2+b^2+c^2}-\dfrac{1}{c^2}\ne0\)
\(\Rightarrow\) \(\left\{{}\begin{matrix}x^2=0\\y^2=0\\z^2=0\end{matrix}\right.\) \(\Rightarrow\)\(\left\{{}\begin{matrix}x=0\\y=0\\z=0\end{matrix}\right.\)
Thay vào biểu thức P :
\(P=0^{2020}+\left(y-1\right)^{2022}+\left(z-1\right)^{203}=0+1-1=0\)
(x+1)(y+1)=xy+x+y+1 => P=xy+x+y= ( x+1)(y+1)-1
\(\left(x+1\right)=\dfrac{\left(b+c\right)^2-a^2}{2bc}=\dfrac{\left(b+c+a\right)\left(b+c-a\right)}{2bc}\)
\(\left(y+1\right)=\dfrac{a^2-\left(b-c\right)^2+\left(b+c\right)^2-a^2}{\left(b+c+a\right)\left(b+c-a\right)}=\dfrac{4bc}{\left(b+c+a\right)\left(b+c-a\right)}\)
\(\Rightarrow\left(x+1\right)\left(y+1\right)=\dfrac{4bc}{2bc}=2=>xy+x+y=2-1=1\)
a) \(\dfrac{1}{\left(a-b\right)\left(b-c\right)}+\dfrac{1}{\left(b-c\right)\left(c-a\right)}+\dfrac{1}{\left(c-a\right)\left(a-b\right)}\)
\(=\dfrac{c-a+a-b+b-c}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=0\)
b) \(\dfrac{\left(a^2-\left(b+c\right)^2\right)\left(a+b-c\right)}{\left(a+b+c\right)\left(a^2+c^2-2ac-b^2\right)}\)
\(=\dfrac{\left(a-b-c\right)\left(a+b+c\right)\left(a+b-c\right)}{\left(a+b+c\right)\left(\left(a-c\right)^2-b^2\right)}\)
\(=\dfrac{\left(a-c-b\right)\left(a-c+b\right)}{\left(a-c-b\right)\left(a-c+b\right)}=1\)
c) \(\dfrac{x-1}{x^3}-\dfrac{x+1}{x^3-x^2}+\dfrac{3}{x^3-2x^2+x}\)
\(=\dfrac{x-1}{x^3}-\dfrac{x+1}{x^2\left(x-1\right)}+\dfrac{3}{x\left(x-1\right)^2}\)
\(=\dfrac{\left(x-1\right)^3-x\left(x+1\right)\left(x-1\right)+3x^2}{x^3\left(x-1\right)^2}\)
\(=\dfrac{x^3-3x^2+3x-1-x^3+x+3x^2}{x^3\left(x-1\right)^2}\)
\(=\dfrac{4x-1}{x^3\left(x-1\right)^2}\)
d) \(\left(\dfrac{x^2-y^2}{xy}-\dfrac{1}{x+y}\left(\dfrac{x^2}{y}-\dfrac{y^2}{x}\right)\right):\dfrac{x-y}{x}\)
\(=\left(\dfrac{\left(x-y\right)\left(x+y\right)}{xy}-\dfrac{1}{x+y}.\dfrac{x^3-y^3}{xy}\right):\dfrac{x-y}{x}\)
\(=\left(\dfrac{\left(x-y\right)\left(x+y\right)}{xy}-\dfrac{\left(x-y\right)\left(x^2+xy+y^2\right)}{xy\left(x+y\right)}\right):\dfrac{x-y}{x}\)
\(=\dfrac{\left(x-y\right)\left(x^2+2xy+y^2-x^2-xy-y^2\right)}{xy\left(x+y\right)}.\dfrac{x}{x-y}\)
\(=\dfrac{x}{x+y}\)
\(1.\)
\(a.\)
\(\dfrac{8}{\left(x^2+3\right)\left(x^2-1\right)}+\dfrac{2}{x^2+3}+\dfrac{1}{x+1}\)
\(=\dfrac{8}{\left(x^2+3\right)\left(x^2-1\right)}+\dfrac{2\left(x^2-1\right)}{\left(x^2+3\right)\left(x^2-1\right)}+\dfrac{1\left(x-1\right)\left(x^2+3\right)}{\left(x^2-1\right)\left(x^2+3\right)}\)
\(=\dfrac{8}{\left(x^2+3\right)\left(x^2-1\right)}+\dfrac{2x^2-2}{\left(x^2+3\right)\left(x^2-1\right)}+\dfrac{x^3-x^2+3x-3}{\left(x^2-1\right)\left(x^2+3\right)}\)
\(=\dfrac{8+2x^2-2+x^3-x^2+3x-3}{\left(x^2+3\right)\left(x^2-1\right)}\)
\(=\dfrac{x^3+x^2+3x+3}{\left(x^2+3\right)\left(x^2-1\right)}\)
\(=\dfrac{x^2\left(x+1\right)+3\left(x+1\right)}{\left(x^2+3\right)\left(x^2-1\right)}\)
\(=\dfrac{\left(x^2+3\right)\left(x+1\right)}{\left(x^2+3\right)\left(x^2-1\right)}\)
\(=x-1\)
\(b.\)
\(\dfrac{x+y}{2\left(x-y\right)}-\dfrac{x-y}{2\left(x+y\right)}+\dfrac{2y^2}{x^2-y^2}\)
\(=\dfrac{x+y}{2\left(x-y\right)}-\dfrac{x-y}{2\left(x+y\right)}+\dfrac{2y^2}{\left(x-y\right)\left(x+y\right)}\)
\(=\dfrac{\left(x+y\right)^2}{2\left(x^2-y^2\right)}-\dfrac{\left(x-y\right)^2}{2\left(x^2-y^2\right)}+\dfrac{4y^2}{2\left(x^2-y^2\right)}\)
\(=\dfrac{x^2+2xy+y^2}{2\left(x^2-y^2\right)}-\dfrac{x^2-2xy+y^2}{2\left(x^2-y^2\right)}+\dfrac{4y^2}{2\left(x^2-y^2\right)}\)
\(=\dfrac{x^2+2xy+y^2-x^2+2xy-y^2+4y^2}{2\left(x^2-y^2\right)}\)
\(=\dfrac{4xy+4y^2}{2\left(x^2-y^2\right)}\)
\(=\dfrac{4y\left(x+y\right)}{2\left(x^2-y^2\right)}\)
\(=\dfrac{2y}{\left(x-y\right)}\)
Tương tự các câu còn lại
\(A=\dfrac{x^2+y^2}{xy}+\dfrac{2xy}{x^2+y^2}=\dfrac{x^2+y^2}{2xy}+\dfrac{x^2+y^2}{2xy}+\dfrac{2xy}{x^2+y^2}\)
\(A\ge\dfrac{2xy}{2xy}+2\sqrt{\left(\dfrac{x^2+y^2}{2xy}\right)\left(\dfrac{2xy}{x^2+y^2}\right)}=3\)
Dấu "=" xảy ra khi \(x=y\)
\(B=\dfrac{\left(x+y\right)^2-4xy}{xy}+\dfrac{4xy}{\left(x+y\right)^2}=\dfrac{\left(x+y\right)^2}{xy}+\dfrac{4xy}{\left(x+y\right)^2}-4\)
\(B=\dfrac{\left(x+y\right)^2}{4xy}+\dfrac{4xy}{\left(x+y\right)^2}+\dfrac{3}{4}.\dfrac{\left(x+y\right)^2}{xy}-4\)
\(B\ge2\sqrt{\dfrac{\left(x+y\right)^2.4xy}{4xy.\left(x+y\right)^2}}+\dfrac{3}{4}.\dfrac{4xy}{xy}-4=1\)
\(B_{min}=1\) khi \(x=y\)
Xét biểu thức \(x+y+xy+1=\left(x+1\right)\left(y+1\right)\)
Từ giả thiết suy ra \(x+1=\dfrac{\left(b+c\right)^2-a^2}{2bc};y+1=\dfrac{4bc}{\left(b+c\right)^2-a^2}\)
Do đó \(\left(x+1\right)\left(y+1\right)=2\Rightarrow xy+x+y+1=2\Rightarrow xy+x+y=1\)
A = x + y + xy
A = x( y + 1) + y
A = \(\dfrac{b^2+c^2-a^2}{2bc}\left(\dfrac{a^2-b^2+2bc-c^2}{\left(b+c\right)^2-a^2}+1\right)+\dfrac{a^2-\left(b-c\right)^2}{\left(b+c\right)^2-a^2}\)
A = \(\dfrac{b^2+c^2-a^2}{2bc}.\dfrac{4bc}{\left(b+c\right)^2-a^2}+\dfrac{a^2-\left(b-c\right)^2}{\left(b+c\right)^2-a^2}\)
A= \(\dfrac{2\left(b^2+c^2-a^2\right)+a^2-b^2+2bc-c^2}{\left(b+c\right)^2-a^2}\)
A = \(\dfrac{b^2+2bc+c^2-a^2}{\left(b+c\right)^2-a^2}=\dfrac{\left(b+c\right)^2-a^2}{\left(b+c\right)^2-a^2}=1\)