![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) A= 2x2-8x+10 = 2(x-2)2+2\(\ge\)2\(\Leftrightarrow\)x=2
Vậy MinA=2 \(\Leftrightarrow\)x=2
b) B= -(x-1)2-(2y+1)2+7 \(\le\)7
Dấu = xảy ra khi x=1 và y=\(\frac{-1}{2}\)
Vậy MaxB=7 ....
![](https://rs.olm.vn/images/avt/0.png?1311)
1)a)x^2-x+1=x2-2.x.1/2+1/4 +3/4
=(x-1/2)2+3/4\(\ge\)3/4(vì (x-1/2)2\(\ge\)0)
dấu = xảy ra khi:
x-1/2=0
x=1/2
vậy GTNN của x^2-x+1 là 3/4 tại x=1/2
b)-x^2+x-y^2-4y-6
=(-x2+2x.1/2-1/4)+(-y2-4y-4)-7/4
=-(x2-2x.1/2+1/4)-(y2+4y+4)-7/4
=-(x-1/2)2-(y+2)2-7/4\(\le\)-7/4( vì -(x-1/2)2\(\le\)0;-(y+2)2\(\le\)0)
dấu = xảy ra khi:
x-1/2=0 và y+2=0
x=1/2 và y=-2
vậy GTLN của -x^2+x-y^2-4y-6 là -7/4 tại x=1/2 và y=-2
![](https://rs.olm.vn/images/avt/0.png?1311)
x^2+4y^2-6x-4y+15
=x2-6x+9+4y2-4y+1+5
=(x-3)2+(y-2)2+5
vì (x-3)2\(\ge\)0;(y-2)2\(\ge\)0 (với mọi x;y)
nên (x-3)2+(y-2)2+5\(\ge\)5
dấu "=" xảy ra khi
x-3=0 và y-2=0
x=3 và y=2
vậy GTNN của x^2+4y^2-6x-4y+15 là 5 tại x=3 và y=2
![](https://rs.olm.vn/images/avt/0.png?1311)
3x - 4y = 10
=> 3x = 10 + 4y => x = (10 + 4y) /3
thay vào A:
\(A=\left(\frac{10+4y}{3}\right)^2+y^2=\frac{100+80y+16y^2}{9}+y^2=\frac{100+80y+25y^2}{9}=\frac{\left(5y+8\right)^2}{9}+4\)
có: \(\frac{\left(5y+8\right)^2}{9}\ge0\Rightarrow\)\(A=\frac{\left(5y+8\right)^2}{9}+4\ge4\)
vậy giá trị nhỏ nhất của A là 4
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=x^2+2x+1+4y^2-4y+4-8\)
\(A=\left(x+1\right)^2+\left(2y-2\right)^2-8\ge-8\)
Dấu = xảy ra khi x+1=0 và 2y-2=0(Mình làm tắt)
Tìm min A mới đúng chứ :v
\(A=x^2+2x+4y^2-4y-3\)
\(A=\left(x^2+2x+1\right)+\left(4y^2-4y+1\right)-5\)
\(A=\left(x+1\right)^2+\left(2y-1\right)^2-5\)
Ta có: \(\hept{\begin{cases}\left(x+1\right)^2\ge0\forall x\\\left(2y-1\right)^2\ge0\forall y\end{cases}}\Rightarrow\left(x+1\right)^2+\left(2y-1\right)^2-5\ge-5\forall x;y\)
\(A=-5\Leftrightarrow\hept{\begin{cases}\left(x+1\right)^2=0\\\left(2y-1\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x+1=0\\2y-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\y=\frac{1}{2}\end{cases}}}\)
Vậy \(A_{min}=-5\Leftrightarrow\hept{\begin{cases}x=-1\\y=\frac{1}{2}\end{cases}}\)
Tham khảo nhé~
Ta có: \(x+4y=1\) \(\Rightarrow x=1-4y\)
Khi đó:
\(x^2+4y^2=\left(1-4y\right)^2+4y^2\)
\(=1-8y+16y^2+4y^2\)
\(=20y^2-8y+1\)
\(=20\left(y^2-\frac{2}{5}y+\frac{1}{25}\right)-\frac{4}{5}+1\)
\(=20\left(y-\frac{1}{5}\right)^2+\frac{1}{5}\ge\frac{1}{5}\)
x+4y=1=>x=1-4y, thay vào tìm GTNN thôi