Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a. \(=[(3x+(4y-5z)][3x-(4y-5z)]=(3x)^2-(4y-5z)^2\)
\(=9x^2-(16y^2-40yz+25z^2)=9x^2-16y^2+40yz-25z^2\)
b.
\(=(3a-1)^2+2(3a-1)(3a+1)+(3a+1)^2=[(3a-1)+(3a+1)]^2=(6a)^2=36a^2\)
Bài 2:
\((x+y+z)^3=[(x+y)+z]^3=(x+y)^3+3(x+y)^2z+3(x+y)z^2+z^3\)
\(=[x^3+y^3+3xy(x+y)]+3(x+y)z(x+y+z)+z^3\)
\(=x^3+y^3+z^3+3xy(x+y)+3(x+y)z(x+y+z)\)
\(=x^3+y^3+z^3+3(x+y)(xy+zx+zy+z^2)\)
\(=x^3+y^3+z^3+3(x+y)(z+x)(z+y)\) (đpcm)
a ) \(x^2-13x+36\)
\(=x^2-4x-9x+36\)
\(=x\left(x-4\right)-9\left(x-4\right)\)
\(=\left(x-9\right)\left(x-4\right)\)
b ) \(x^2+5x-14\)
\(=x^2-2x+7x-14\)
\(=x\left(x-2\right)+7\left(x-2\right)\)
\(=\left(x+7\right)\left(x-2\right)\)
c ) \(2x^2-5x-12\)
\(=2x^2-8x+3x-12\)
\(=2x\left(x-4\right)+3\left(x-4\right)\)
\(=\left(2x+3\right)\left(x-4\right)\)
d ) \(x^2-4xy-12y^2\)
\(=x^2-4xy+4y^2-16y^2\)
\(=\left(x-2y\right)^2-\left(4y\right)^2\)
\(=\left(x-2y-4y\right)\left(x-2y+4y\right)\)
\(=\left(x-6y\right)\left(x+2y\right)\)
a) x2-13x+36
=x2-4x-9x+36
=(x2-4x)-(9x-36)
=x(x-4)-9(x-4)
=(x-4)(x-9)
b) x2+5x-14
=x2+7x-2x-14
=(x2+7x)-(2x+14)
=x(x+7)-2(x+7)
=(x+7)(x-2)
c) 2x2-5x-12
=2x2+3x-8x-12
=(2x2+3x)-(8x+12)
=x(2x+3)-4(2x+3)
=(2x+3)(x-4)
d) x2-4xy-12y2
=x2-4xy+4y2-16y2
=(x2-4xy+4y2)-16y2
=(x-2y)2-16y2
=(x-2y-4y)(x-2y+4y)
=(x-6y)(x+2y)
a2 - ab + a - b = (a2 - ab) + (a - b) = a(a - b) + (a - b) = (a - b)(a + 1)
5y2 - 10yz + 5z2 = 5(y2 -2yz + z2) = 5(y - z)2
3x2 - 12y2 = 3(x2 - 4y2) = 3(x - 2y)(x + 2y)
ab - b + a2 - a = (ab + a2) - (a + b) = a(a + b) - (a + b) = (a + b)(a - 1)
x2 - x - 6 = x2 + 2x - 3x - 6 = x(x + 2) - 3(x + 2) = (x + 2)(x - 3)
a) A = (x + 1)(y - 2) - (2 - y)2
= -[(x + 1)(2 - y) + (2 - y)2]
= -[(x + 1 - 2 + y)(2 - y)]
= -[(x - 1 + y)(2 - y)]
= (x - 1 + y)(y - 2)
Bài 2:
a) \(A=\left(x+1\right)\left(y-2\right)-\left(2-y\right)^2\)
\(A=\left(x+1\right)\left(y-2\right)-\left(y-2\right)^2\)
\(A=\left(y-2\right)\left(x+1-y+2\right)\)
\(A=\left(y-2\right)\left(x-y+3\right)\)
b) \(B=x^2-6xy+9y^2+4x-12y\)
\(B=\left[x^2-2\cdot x\cdot3y+\left(3y\right)^2\right]+4\left(x-3y\right)\)
\(B=\left(x-3y\right)^2+4\left(x-3y\right)\)
\(B=\left(x-3y\right)\left(x-3y+4\right)\)
Bài 3:
a) \(3\left(x-2\right)\left(x+3\right)-x\left(3x+1\right)=2\)
\(\left(3x^2+3x-18\right)-\left(3x^2+x\right)-2=0\)
\(3x^2+3x-18-3x^2-x-2=0\)
\(2x-20=0\)
\(x=10\)
b) \(6x^2+13x+5=0\)
\(6x^2+10x+3x+5=0\)
\(2x\left(3x+5\right)+\left(3x+5\right)=0\)
\(\left(3x+5\right)\left(2x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3x+5=0\\2x+1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{-5}{3}\\x=\frac{-1}{2}\end{cases}}}\)
Ta có :
\(x^2+4y^2+z^2-6x-12y-2z+4xy+13\)
\(=x^2+4y^2-9+4xy-12y-6x+z^2-2z+1+21\)
\(=\left(x+2y-3\right)^2+\left(z-1\right)^2+21\)
Vì \(\left(x+2y-3\right)^2\ge0\forall x,y\)
\(\left(z-1\right)^2\ge0\forall z\)
\(\Rightarrow\left(x+2y-3\right)^2+\left(z-1\right)^2\ge0\forall x,y,z\)
\(\Rightarrow\left(x+2y-3\right)^2+\left(z-1\right)^2+21\ge21>0\forall x,y,z\)
Vậy \(x^2+4y^2+z^2-6x-12y-2z+4xy+13\) luôn dương với mọi x,y,z
Ta có: \(x^2=y^2+z^2\)
\(\Leftrightarrow x^2-y^2=z^2\)
\(\Leftrightarrow25\left(x-y\right)\left(x+y\right)=25z^2\)
\(\Leftrightarrow\left(25x-25y\right)\left(x+y\right)=25z^2\)
\(\Leftrightarrow\left(13x-12y+12x-13y\right)\left(13x-12y-12x+13y\right)=25z^2\)
\(\Leftrightarrow\left(13x-12y\right)^2-\left(12x-13y\right)^2=25z^2\)
\(\Leftrightarrow\left(13x-12y\right)^2-\left(5z\right)^2=\left(12x-13y\right)^2\)
\(\Leftrightarrow\left(13x-12y-5z\right)\left(13x-12y+5z\right)=\left(12x-13y\right)^2\)(ĐPCM).