K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2017

Áp dụng hằng đẳng thức ( a - b ) ( a + b ) = a2 - b2 ta đc:

     \(\left(5x-3y+8z\right)\left(5x-3y-8z\right)=\left(5x-3y\right)^2-\left(8z\right)^2\)

                                                                     \(=25x^2-30xy+9y^2-64z^2\)

                                                   Đề có sai ko vậy bn

6 tháng 8 2017

mk lấy kq của bạn Kia Cerato mk giải típ

tc \(x^2=y^2+4z^2\Leftrightarrow x^2-y^2=4z^2\)

\(\Leftrightarrow25x^2-30xy+9y^2-16.4z^2\)

\(=25x^2-30xy+9y^2-16\left(x^2-y^2\right)\)

\(=25x^2+9y^2-30xy-16x^2+16y^2\)

\(=9x^2-30xy+25y^2=\left(3x-5y\right)^2\)

ok

10 tháng 9 2021

\(x^2-y^2=4z^2\\ \Leftrightarrow64z^2=16x^2-16y^2\)

\(\left(5x-3y+8z\right)\left(5x-3y-8z\right)\\ =\left(5x-3y\right)^2-64z^2\\ =25x^2-30xy+9y^2-64z^2\\ =25x^2-16x^2+9y^2+16y^2-30xy\\ =9x^2-30xy+25y^2=\left(3x-5y\right)^2\)

10 tháng 9 2021

Sao x^2-y^2=4z^2 ↔64z^2 =16x^2-16y^2 vậy ạ 

mình cảm ơn nhiều 

22 tháng 9 2019

có \(x^2=y^2+4x^2\)

\(x^2-y^2=4z^2\)

Tiếp tục với \(\left(5x-3y+8z\right)\left(5x-3y-8z\right)+1\)

\(=\left(5x-3y\right)^2-\left(8x\right)^2+1\)

\(=25x^2-30xy+9y^2-64x^2+1\)

\(=25x^2-30xy+9y^2-16\cdot4x^2+1\)

Thay \(x^2-y^2=4z^2\)

\(\Rightarrow25x^2-30xy+9y^2-16\cdot4x^2+1\)

\(=25x^2-30xy+9y^2-16\cdot\left(x^2-y^2\right)+1\)

\(=25x^2-30xy+9y^2-16x^2+16y^2+1\)

\(=9x^2-30xy+25y^2+1\)

\(=\left(9x^2-30xy+25y^2\right)+1\)

\(=\left(3x-5y\right)^2+1\)

ta có \(\left(3x-5y\right)^2\ge0\)

\(\Rightarrow\left(3x-5y\right)^2+1>0\)

\(\Rightarrow\left(5x-3x+8z\right)\left(5x-3y-8z\right)+1\)luôn dương với mọi x;y

8 tháng 12 2023

Phân tích đa thức thành nhân tử

1: \(x^2-x-y^2-y\)

\(=\left(x^2-y^2\right)-\left(x+y\right)\)

\(=\left(x+y\right)\left(x-y\right)-\left(x+y\right)\)

\(=\left(x+y\right)\left(x-y-1\right)\)

2: \(x^2-y^2+x-y\)

\(=\left(x^2-y^2\right)+\left(x-y\right)\)

\(=\left(x-y\right)\left(x+y\right)+\left(x-y\right)\)

\(=\left(x-y\right)\left(x+y+1\right)\)

3: \(3x-3y+x^2-y^2\)

\(=\left(3x-3y\right)+\left(x^2-y^2\right)\)

\(=3\left(x-y\right)+\left(x-y\right)\left(x+y\right)\)

\(=\left(x-y\right)\left(x+y+3\right)\)

4: \(5x-5y+x^2-y^2\)

\(=\left(5x-5y\right)+\left(x^2-y^2\right)\)

\(=5\left(x-y\right)+\left(x-y\right)\left(x+y\right)\)

\(=\left(x-y\right)\left(5+x+y\right)\)

5: \(x^2-5x-y^2-5y\)

\(=\left(x^2-y^2\right)-\left(5x+5y\right)\)

\(=\left(x-y\right)\left(x+y\right)-5\left(x+y\right)\)

\(=\left(x+y\right)\left(x-y-5\right)\)

6: \(x^2-y^2+2x-2y\)

\(=\left(x^2-y^2\right)+\left(2x-2y\right)\)

\(=\left(x-y\right)\left(x+y\right)+2\left(x-y\right)\)

\(=\left(x-y\right)\left(x+y+2\right)\)

7: \(x^2-4y^2+x+2y\)

\(=\left(x^2-4y^2\right)+\left(x+2y\right)\)

\(=\left(x+2y\right)\left(x-2y\right)+\left(x+2y\right)\)

\(=\left(x+2y\right)\left(x-2y+1\right)\)

8: \(x^2-y^2-2x-2y\)

\(=\left(x^2-y^2\right)-\left(2x+2y\right)\)

\(=\left(x-y\right)\left(x+y\right)-2\left(x+y\right)\)

\(=\left(x+y\right)\left(x-y-2\right)\)

9: \(x^2-4y^2+2x+4y\)

\(=\left(x^2-4y^2\right)+\left(2x+4y\right)\)

\(=\left(x-2y\right)\left(x+2y\right)+2\left(x+2y\right)\)

\(=\left(x+2y\right)\left(x-2y+2\right)\)

7 tháng 4 2018

Sửa đề: x2 = y2 + z2

=> z2 = x2 - y2

Ta có:

\(\left(5x-3y+4z\right)\left(5x-3y-4z\right)\)

\(=\left(5x-3y\right)^2-\left(4z\right)^2\)

\(=25x^2-30xy+9y^2-16z^2\)

\(=25x^2-30xy+9y^2-16\left(x^2-y^2\right)\)

\(=\left(3x-5y\right)^2\)

=> ĐPCM

16 tháng 8 2018

Ta có:

\(x^2-y^2-z^2=0\left(gt\right)\)

Nếu \(\left(5x-3y+4z\right)\left(5x-3y-4z\right)=\left(3x-5y\right)^2\)

\(\Rightarrow\left(5x-3y\right)^2-16z^2=\left(3x-5y\right)^2\)

\(\Rightarrow\left(5x-3y\right)^2-\left(3x-5y\right)^2=16z^2\)

\(\Rightarrow\left(5x-3y-3x+5y\right)\left(5x-3y+3x-5y\right)=16z^2\)

\(\Rightarrow\left(2x+2y\right)\left(8x-8y\right)=16z^2\)

\(\Rightarrow2\left(x+y\right).8\left(x-y\right)=16z^2\)

\(\Rightarrow16\left(x^2-y^2\right)=16z^2\)

\(\Rightarrow x^2-y^2=z^2\)

\(\Rightarrow x^2-y^2-z^2=0\)

\(\Rightarrow\) Đúng với giả thuyết ban đầu

Vậy \(\left(5x-3y+4z\right)\left(5x-3y-4z\right)=\left(3x-5y\right)^2\) với \(x^2-y^2-z^2=0\)