K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2016

Áp dụng BĐT Bunhiacopxki với 2 dãy số: x; 2y và 1;1. Ta có:

\(\left(x^2+2y^2\right)\left(1^2+1^2\right)\ge\left(x+2y\right)^2\)

\(<=>\left(x^2+2y^2\right)\times2\ge1\)

\(<=>\left(x^2+2y^2\right)\ge\frac{1}{2}\)

\(<=>P\ge\frac{1}{2}\)

Vậy GTNN của P là 1/2 <=> \(\frac{x}{1}=\frac{2y}{1}<=>x=2y\)

12 tháng 5 2016

áp dụng BĐT cauchy schwarz ta có:

(x2+2y2)(1+2)\(\ge\)(x+2y)2=1

nên x2+2y2\(\ge\frac{1}{3}\)

AH
Akai Haruma
Giáo viên
18 tháng 12 2023

Bạn nên viết lại đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn hơn nhé.

14 tháng 12 2016

Nguồn : diendantoanhoc.net

Áp dụng BĐT Cauchy Schwarz có :

\(\left(x^2+2y^2\right)\left(1+2\right)\ge\left(x+2y\right)^2=1\)

\(\Rightarrow x^2+2y^2\ge\frac{1}{3}\)

Vậy ...

19 tháng 5 2016

Ta có: x + 2y = 1 <=> x = 1 - 2y. 

Thay vào P ta có: 

P = (1 - 2y)2 + 2y2 = (1- 4y +4y2) + 2y2 = 6y2 - 4y+1 = 6(y2 - 2.1/3.y +1/9) + 1/3 = 6(y - 1/3)2 + 1/3 >= 1/3

Vậy P nhỏ nhất = 1/3 khi và chỉ khi 6(y - 1/3)2 = 0 <=> y - 1/3 = 0 <=> y = 1/3, x = 1 -2y = 1 - 2/3 = 1/3

Vậy P nhỏ nhất = 1/3 khi x = 1/3, y = 1/3

12 tháng 7 2023

Mày nhìn cái chóa j

7 tháng 4 2017

bài 1 chắc điểm rơi x=2;y=4, cách làm tạm thời mk chưa nghĩ ra

bài 2: P=(x^2+4y^2)/(x-2y)=[x^2+(2y)^2]/(x-2y)=[(x-2y)^2+4xy]/(x-2y)=(x-2y) + 4xy/(x-2y)=(x-2y)+4/(x-2y) do xy=1

Áp dụng bđt AM-GM , ta có P >/  4 =>minP=4

đẳng thức xảy ra khi đồng thời  x-2y=2,x>2y,xy=1 ,tự giải hệ này ra nhé

18 tháng 5 2016

ta có x2+2y2=x2+y2+y2

áp dụng bất đẳng thức bunhia copxki ta có

(12+12+12)(x2+y2+y2) >hoặc=(x+y+y)2

3(x2+2y2) > hoặc = (x+2y)2

3(x2+2y2) > hoặc = 12 

3(x2+2y2) > hoặc = 1

x2+2y> hoặc = 1/3 

vậy gtnn của x2+2ylà 1/3

9 tháng 5 2019

Áp dụng BĐT Bu-nhi-a-cop-ski ta có:

\(S=\left(x+2y\right)^2=\left(x+\sqrt{2}\cdot\sqrt{2}y\right)^2\le\left(1+\sqrt{2}^2\right)\left[x^2+\left(\sqrt{2}y\right)^2\right]\)

\(\Leftrightarrow\left(x+2y\right)^2\le3\left(x^2+2y^2\right)\)

\(\Leftrightarrow x^2+2y^2\ge\frac{1}{3}\)

Dấu "=" xảy ra khi và chỉ khi \(x=y=\frac{1}{3}\)

Vậy \(S_{min}=\frac{1}{3}\Leftrightarrow x=y=\frac{1}{3}\)

10 tháng 5 2019

Cách nữa nè:

Với mọi số thực k không âm,ta luôn có: \(k\left(x-\frac{1}{3}\right)^2\ge0\)

\(\Leftrightarrow k\left(x^2-\frac{2}{3}x+\frac{1}{9}\right)\ge0\Leftrightarrow kx^2\ge\frac{2}{3}x.k-\frac{1}{9}k\)

Chọn k = 1 ta tìm được: \(x^2\ge\frac{2}{3}x-\frac{1}{9}\).Tương tự với y nhưng chọn k = 2 ta tìm được:\(2y^2\ge\frac{4}{3}y-\frac{2}{9}\)

Cộng theo vế hai BĐT trên,ta được: \(x^2+2y^2\ge\frac{2}{3}\left(x+2y\right)-\frac{1}{3}=\frac{1}{3}\)

Dấu "=" xảy ra khi \(x=y=\frac{1}{3}\).

Vậy...

14 tháng 2 2019

Dự đoán điểm rơi x = 1;y = 2 và làm thôi:3

Ta có: \(G=\left(x^2+1\right)+\left(2y^2+8\right)+\frac{1}{x}+\frac{24}{y}-9\)

\(\ge2x+8y+\frac{1}{x}+\frac{24}{y}-9=\left(x+\frac{1}{x}\right)+\left(6y+\frac{24}{y}\right)+x+2y-9\)

\(\ge2\sqrt{x.\frac{1}{x}}+2\sqrt{6y.\frac{24}{y}}+x+2y\ge2+24+5-9=22\)

Dấu "=" xảy ra khi x = 1;y=2

Vậy \(G_{min}=22\Leftrightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}\)