Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn nên viết lại đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn hơn nhé.
Nguồn : diendantoanhoc.net
Áp dụng BĐT Cauchy Schwarz có :
\(\left(x^2+2y^2\right)\left(1+2\right)\ge\left(x+2y\right)^2=1\)
\(\Rightarrow x^2+2y^2\ge\frac{1}{3}\)
Vậy ...
Ta có: x + 2y = 1 <=> x = 1 - 2y.
Thay vào P ta có:
P = (1 - 2y)2 + 2y2 = (1- 4y +4y2) + 2y2 = 6y2 - 4y+1 = 6(y2 - 2.1/3.y +1/9) + 1/3 = 6(y - 1/3)2 + 1/3 >= 1/3
Vậy P nhỏ nhất = 1/3 khi và chỉ khi 6(y - 1/3)2 = 0 <=> y - 1/3 = 0 <=> y = 1/3, x = 1 -2y = 1 - 2/3 = 1/3
Vậy P nhỏ nhất = 1/3 khi x = 1/3, y = 1/3
bài 1 chắc điểm rơi x=2;y=4, cách làm tạm thời mk chưa nghĩ ra
bài 2: P=(x^2+4y^2)/(x-2y)=[x^2+(2y)^2]/(x-2y)=[(x-2y)^2+4xy]/(x-2y)=(x-2y) + 4xy/(x-2y)=(x-2y)+4/(x-2y) do xy=1
Áp dụng bđt AM-GM , ta có P >/ 4 =>minP=4
đẳng thức xảy ra khi đồng thời x-2y=2,x>2y,xy=1 ,tự giải hệ này ra nhé
ta có x2+2y2=x2+y2+y2
áp dụng bất đẳng thức bunhia copxki ta có
(12+12+12)(x2+y2+y2) >hoặc=(x+y+y)2
3(x2+2y2) > hoặc = (x+2y)2
3(x2+2y2) > hoặc = 12
3(x2+2y2) > hoặc = 1
x2+2y2 > hoặc = 1/3
vậy gtnn của x2+2y2 là 1/3
Áp dụng BĐT Bu-nhi-a-cop-ski ta có:
\(S=\left(x+2y\right)^2=\left(x+\sqrt{2}\cdot\sqrt{2}y\right)^2\le\left(1+\sqrt{2}^2\right)\left[x^2+\left(\sqrt{2}y\right)^2\right]\)
\(\Leftrightarrow\left(x+2y\right)^2\le3\left(x^2+2y^2\right)\)
\(\Leftrightarrow x^2+2y^2\ge\frac{1}{3}\)
Dấu "=" xảy ra khi và chỉ khi \(x=y=\frac{1}{3}\)
Vậy \(S_{min}=\frac{1}{3}\Leftrightarrow x=y=\frac{1}{3}\)
Cách nữa nè:
Với mọi số thực k không âm,ta luôn có: \(k\left(x-\frac{1}{3}\right)^2\ge0\)
\(\Leftrightarrow k\left(x^2-\frac{2}{3}x+\frac{1}{9}\right)\ge0\Leftrightarrow kx^2\ge\frac{2}{3}x.k-\frac{1}{9}k\)
Chọn k = 1 ta tìm được: \(x^2\ge\frac{2}{3}x-\frac{1}{9}\).Tương tự với y nhưng chọn k = 2 ta tìm được:\(2y^2\ge\frac{4}{3}y-\frac{2}{9}\)
Cộng theo vế hai BĐT trên,ta được: \(x^2+2y^2\ge\frac{2}{3}\left(x+2y\right)-\frac{1}{3}=\frac{1}{3}\)
Dấu "=" xảy ra khi \(x=y=\frac{1}{3}\).
Vậy...
Dự đoán điểm rơi x = 1;y = 2 và làm thôi:3
Ta có: \(G=\left(x^2+1\right)+\left(2y^2+8\right)+\frac{1}{x}+\frac{24}{y}-9\)
\(\ge2x+8y+\frac{1}{x}+\frac{24}{y}-9=\left(x+\frac{1}{x}\right)+\left(6y+\frac{24}{y}\right)+x+2y-9\)
\(\ge2\sqrt{x.\frac{1}{x}}+2\sqrt{6y.\frac{24}{y}}+x+2y\ge2+24+5-9=22\)
Dấu "=" xảy ra khi x = 1;y=2
Vậy \(G_{min}=22\Leftrightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}\)
Áp dụng BĐT Bunhiacopxki với 2 dãy số: x; 2y và 1;1. Ta có:
\(\left(x^2+2y^2\right)\left(1^2+1^2\right)\ge\left(x+2y\right)^2\)
\(<=>\left(x^2+2y^2\right)\times2\ge1\)
\(<=>\left(x^2+2y^2\right)\ge\frac{1}{2}\)
\(<=>P\ge\frac{1}{2}\)
Vậy GTNN của P là 1/2 <=> \(\frac{x}{1}=\frac{2y}{1}<=>x=2y\)
áp dụng BĐT cauchy schwarz ta có:
(x2+2y2)(1+2)\(\ge\)(x+2y)2=1
nên x2+2y2\(\ge\frac{1}{3}\)