\(x^2+4y^2=1\). Tìm giá trị lớn nhất, giá trị nhỏ nhất của: \(S=...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 11 2018

Ta sẽ cm bổ đề sau: 

Bổ đề\(\left(a^2+b^2\right)\left(c^2+d^2\right)\ge\left(ac+bd\right)^2\) (Bunyakovski 2 số)

C/m : Ta thấy: \(\left(ad-bc\right)^2\ge0\Leftrightarrow a^2d^2-2abcd+b^2c^2\ge0\)

      \(\Leftrightarrow a^2d^2+b^2c^2\ge2abcd\Leftrightarrow a^2c^2+b^2c^2+a^2d^2+b^2d^2\ge a^2c^2+2abcd+b^2d^2\)

       \(\Leftrightarrow\left(a^2+b^2\right)\left(c^2+d^2\right)\ge\left(ac+bd\right)^2\)

Đẳng thức xảy ra khi và chỉ khi \(\frac{a}{c}=\frac{b}{d}\)

Quay lại bài toán, áp dụng bđt bunyakovski ta có :

     \(\left(x^2+y^2\right)\left(1+1\right)\ge\left(x+y\right)^2\)

\(\Leftrightarrow2\ge\left(x+y\right)^2\Leftrightarrow-\sqrt{2}\le x+y\le\sqrt{2}\)

\(\Rightarrow\hept{\begin{cases}min\left(x+y\right)=-\sqrt{2}\Leftrightarrow x=y=\frac{-1}{\sqrt{2}}\\max\left(x+y\right)=\sqrt{2}\Leftrightarrow x=y=\frac{1}{\sqrt{2}}\end{cases}}\)

26 tháng 1 2020

câu 1 x phải là dấu lớn hơn hoặc bằng mới giải được

2. xét x^2- 6x + 10

= X^2 -6x +9 +1

=(x^2 -3 )^2 +1

Nhận xét ( x^2 - 3) ^2 luôn luôn lớn hơn hoặc bằng 0 với moi x thuộc R

=> ( x^2 -3)^2+1 luôn luôn lớn hơn hoặc bằng 1 với mọi x thuộc R

=> \(\frac{2018}{X^2-6x+10}\)luôn luôn bé hơn hoặc bằng 2018 với mọi x thuộc R ( 2018/1)

=> P luôn luôn bé hơn hoặc bằng 2018với mọi x thuộc R

Dấu " =" xảy ra khi ( \(\left(x-3\right)^2\)=0

=> x-3 = 0

=> x=3

Vậy giá tị lớn nhất của P là 1 đạt được khi x=3

1 tháng 5 2019

Ta có : (x+y)2+7x+7y+y2+6=0

( x2 + y2 + \(\frac{49}{4}\)+ 7x + 7y + 2xy ) + y2 - \(\frac{25}{4}\)= 0

( x + y + \(\frac{7}{2}\))2 = \(\frac{25}{4}\)- y2 \(\le\frac{25}{4}\)

\(\Rightarrow\frac{-5}{4}\le x+y+\frac{7}{2}\le\frac{5}{4}\)

\(\Rightarrow\frac{-15}{4}\le x+y+1\le\frac{-5}{4}\)

\(\Rightarrow\)...... 

1 tháng 5 2019

lon so roi,

thay -5/4 thành -5/2 ; 5/4 thành 5/2

-15/4 thành -5 ; 5/2 thành 0 

9 tháng 8 2016

a) \(A=2x^2+9y^2-6xy-6x-12y+2014\)

\(=\left(2x^2-6xy-6x\right)+\left(9y^2-12y\right)+2014\)

\(=2\left[x^2-2.x.\frac{3\left(y+1\right)}{2}+\frac{9\left(y+1\right)^2}{4}\right]+\left[9y^2-12y-\frac{9}{2}.\left(y+1\right)^2\right]+2014\)

\(=2\left[x-\frac{3\left(y+1\right)}{2}\right]^2+\frac{1}{2}\left(3y-7\right)^2+1985\ge1985\)

Dấu "=" xảy ra khi và chỉ khi y = \(\frac{7}{3}\Rightarrow x=5\)

Vậy Min A = 1985 tại \(\left(x;y\right)=\left(5;\frac{7}{3}\right)\)

b) \(B=-x^2+2xy-4y^2+2x+10y-8\)

\(=-\left(x^2-2xy-2x\right)-\left(4y^2-10y\right)-8\)

\(=-\left[x^2-2x\left(y+1\right)+\left(y+1\right)^2\right]-\left[4y^2-10y-\left(y+1\right)^2\right]-8\)

\(=-\left(x-y-1\right)^2-\left(y-2\right)^2+5\le5\)

Dấu đẳng thức xảy ra khi và chỉ khi y = 2 => x = 3

Vậy B đạt giá trị lớn nhất bằng 5 tại (x;y) = (3;2)

9 tháng 8 2016

pn ơi , giải thích hộ t câu a vs, t k hiểu rõ lắm

24 tháng 6 2017

Theo bất đẳng thức Bunhiacopxki , ta có :

\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x+y\right)^2=2^2=4\)

\(\Rightarrow2\left(x^2+y^2\right)\ge4\)

\(\Rightarrow\left(x^2+y^2\right)\ge2\)

Dấu "=" xảy ra <=> x = y = 1

18 tháng 9 2019

Câu 1: Tự làm :D

Câu 2: \(A=\left(x-y\right)^2+\left(y-2\right)^2+1\ge1\)

Đẳng thức xảy ra khi x = y = 2

Vậy...

Câu 3:

a) Trùng với câu 2

b) ĐK:x khác -1

\(B=\frac{3\left(x+1\right)}{x^2\left(x+1\right)+\left(x+1\right)}=\frac{3\left(x+1\right)}{\left(x^2+1\right)\left(x+1\right)}\)

\(=\frac{3}{x^2+1}\le\frac{3}{0+1}=3\)

Đẳng thức xảy ra khi x = 0

18 tháng 9 2019

Làm nốt cái câu 1 và đầy đủ cái câu 2:v

\(\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}+\frac{1}{x^2+13x+42}=\frac{1}{18}\)

\(\Leftrightarrow\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)

\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+7}=\frac{1}{18}\)

\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+7}=\frac{1}{18}\)

Làm nốt nha.Lười quá:((

2

\(A=x^2-2xy+2y^2-4y+5\)

\(A=\left(x-2xy+y^2\right)+\left(y^2-4y+4\right)+1\)

\(A=\left(x-y\right)^2+\left(y-2\right)^2+1\)

\(A\ge1\)

Dấu "=" xảy ra tại \(x=y=2\)

7 tháng 8 2018

I don't know

...................

Sorry !

13 tháng 5 2020

\(A^2=\left(x+y\right)^2\le2\left(x^2+y^2\right)=2\Rightarrow-\sqrt{2}\le A\le\sqrt{2}\)

Amin = \(-\sqrt{2}\Leftrightarrow x=y=-\frac{1}{\sqrt{2}}\)

Amax \(=\sqrt{2}\) khi \(x=y=\frac{1}{\sqrt{2}}\)

21 tháng 5 2018

pokkk

23 tháng 5 2018

sao bạn V