K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 6 2015

=> 2x2 - 2y2 + x - y = y2

=> 2(x2 - y2) + (x - y) = y2

=> 2.(x - y).(x+y) + (x - y) = y2

=> (x - y).(2x+ 2y + 1) = y2  là số chính phương  (*)

Nhận xét: x - y và 2x + 2y + 1 nguyên tố cùng nhau  (**)  vì: 

Gọi d = ƯCLN(x - y; 2x + 2y + 1) 

=> x- y ; 2x + 2y + 1 chia hết cho d

=> y2 = (x - y).(2x+ 2y+ 1) chia hết cho d2 => y chia hết cho d

và  (2x+ 2y+ 1) - 2(x - y)  chia hết cho d =>  4y + 1 chia hết cho d

=> 1 chia hết cho d hay d = 1

Từ (*)(**) => x - y và 2x + 2y + 1 là số chính phương

Tương tự: có 3y2 - 3x2 + y - x = -x2

=> 3(x2 - y2) + (x - y) = x2

=> 3(x - y)(x+y) + (x - y) = x2

=> (x - y).(3x+ 3y + 1) = x2 là số chính phương 

Mà x - y là số chính phương nên 3x + 3y + 1 là số chonhs phương

=> ĐPCM

23 tháng 6 2015

=> 2x2 - 2y2 + x - y = y2

=> 2(x2 - y2) + (x - y) = y2

=> 2.(x - y).(x+y) + (x - y) = y2

=> (x - y).(2x+ 2y + 1) = y2  là số chính phương  (*)

Nhận xét: x - y và 2x + 2y + 1 nguyên tố cùng nhau  (**)  vì: 

Gọi d = ƯCLN(x - y; 2x + 2y + 1) 

=> x- y ; 2x + 2y + 1 chia hết cho d

=> y2 = (x - y).(2x+ 2y+ 1) chia hết cho d2 => y chia hết cho d

và  (2x+ 2y+ 1) - 2(x - y)  chia hết cho d =>  4y + 1 chia hết cho d

=> 1 chia hết cho d hay d = 1

Từ (*)(**) => x - y và 2x + 2y + 1 là số chính phương

Tương tự: có 3y2 - 3x2 + y - x = -x2

=> 3(x2 - y2) + (x - y) = x2

=> 3(x - y)(x+y) + (x - y) = x2

=> (x - y).(3x+ 3y + 1) = x2 là số chính phương 

Mà x - y là số chính phương nên 3x + 3y + 1 là số chonhs phương

=> ĐPCM

1 tháng 7 2015

=> 2x2 - 2y2 + x - y = y2

=> 2(x2 - y2) + (x - y) = y2

=> 2.(x - y).(x+y) + (x - y) = y2

=> (x - y).(2x+ 2y + 1) = y2  là số chính phương  (*)

Nhận xét: x - y và 2x + 2y + 1 nguyên tố cùng nhau  (**)  vì: 

Gọi d = ƯCLN(x - y; 2x + 2y + 1) 

=> x- y ; 2x + 2y + 1 chia hết cho d

=> y2 = (x - y).(2x+ 2y+ 1) chia hết cho d2 => y chia hết cho d

và  (2x+ 2y+ 1) - 2(x - y)  chia hết cho d =>  4y + 1 chia hết cho d

=> 1 chia hết cho d hay d = 1

Từ (*)(**) => x - y và 2x + 2y + 1 là số chính phương

Tương tự: có 3y2 - 3x2 + y - x = -x2

=> 3(x2 - y2) + (x - y) = x2

=> 3(x - y)(x+y) + (x - y) = x2

=> (x - y).(3x+ 3y + 1) = x2 là số chính phương 

Mà x - y là số chính phương nên 3x + 3y + 1 là số chính phương

=> ĐPCM

15 tháng 10 2018

Gọi A là số chính phương A = n2 (n ∈ N)

a)Xét các trường hợp:

n= 3k (k ∈ N) ⇒ A = 9k2 chia hết cho 3

n= 3k 1  (k ∈ N) A = 9k2  6k +1 chia cho 3 dư 1

Vậy số chính phương chia cho 3 chỉ có thể có số dư bằng 0 hoặc 1.

+Ta đã sử tính chia hết cho 3 và số dư trong phép chia cho 3 .

b)Xét các trường hợp

n =2k (k ∈ N) ⇒ A= 4k2, chia hết cho 4.

n= 2k+1(k ∈ N) ⇒ A = 4k2 +4k +1

= 4k(k+1)+1,

chia cho 4 dư 1(chia cho 8 cũng dư 1)

vậy số chính phương chia cho 4 chỉ có thể có số dư bằng 0 hoặc 1.

+Ta đã sử tính chia hết cho 4 và số dư trong phép chia cho 4 .

     Chú ý: Từ bài toán trên ta thấy:

-Số chính phương chẵn chia hết cho 4

-Số chính phương lẻ chia cho 4 dư 1( chia cho 8 cũng dư 1).

bạn à câu C hình như bạn viết thiếu đề