Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có hình vẽ:
x O y z t t'
Vì Ot là tia phân giác của xOy nên \(xOt=tOy=\frac{xOy}{2}\)
Ta có: xOy + yOz = 180o (kề bù)
=> \(\frac{xOy}{2}+\frac{yOz}{2}=90^o\)
=> tOy + \(\frac{yOz}{2}=90^o\)
Lại có: tOy + yOt' = 90o
=> yOt' = \(\frac{yOz}{2}\) => Ot' là tia phân giác của yOz (đpcm)
a, Xét tg ABM và tg ACM ,có :
AB=AC ( vì tg ABC cân tại A )
BM=CM ( M là trung điểm của BC )
AM chung
=> tg ABM=tg ACM ( c.c.c)
b, Vì tg ABC cân tại A nên :
+) AM là đường phân giác của góc BAC .
+) AM vuông góc với BC.
a: Xét ΔOAM và ΔOBM có
OA=OB
\(\widehat{AOM}=\widehat{BOM}\)
OM chung
Do đó: ΔOAM=ΔOBM
b: Xét ΔOAC và ΔOBD có
\(\widehat{AOC}\) chung
OA=OB
\(\widehat{OAC}=\widehat{OBD}\)
Do đó; ΔOAC=ΔOBD
Suy ra: AC=BD
a: \(\widehat{xOy}=\dfrac{160^0+120^0}{2}=140^0\)
\(\widehat{yOz}=160^0-140^0=20^0\)
b: \(\widehat{xOt}=160^0-90^0=70^0\)
Trên cùng một nửa mặt phẳng bờ chứa tia Ox, ta có: \(\widehat{xOt}< \widehat{xOy}\)
nên tia Ot nằm giữa hai tia Ox và Oy
mà \(\widehat{xOt}=\dfrac{1}{2}\widehat{xOy}\)
nên Ot là tia phân giác của góc xOy