Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng côsi cho 3 số ta có
\(2xy+2xy+\left(x^2+y^2\right)\ge3\sqrt[3]{4x^2y^2\left(x^2+y^2\right)}\)
=> \(4+2xy\ge3\sqrt[3]{4x^2y^2\left(x^2+y^2\right)}\)
Mà \(2xy\le\frac{\left(x+y\right)^2}{2}=2\)
=> \(3\sqrt[3]{4x^2y^2\left(x^2+y^2\right)}\le6\)
=> \(x^2y^2\left(x^2+y^2\right)\le2\)( Điều phải chứng minh)
Dấu bằng xảy ra khi x=y=1
Cách khác nè
\(x^2y^2\left(x^2+y^2\right)=\frac{1}{2}xy.\left(x^2+y^2\right)2xy\le\frac{1}{2}.\frac{\left(x+y\right)^2}{4}.\frac{\left(x+y\right)^4}{4}=\frac{1}{2}.\frac{4}{4}.\frac{16}{4}=2\left(đpcm\right)\)
Dấu '=' xảy ra khi \(\hept{\begin{cases}x=y\\x+y=2\end{cases}\Leftrightarrow x=y=1}\)
:))
<=> \(\frac{m^2y+n^2x}{xy}>=\left(\frac{m^2+2mn+n^2}{x+y}\right)\)
<=> \(\left(m^2y+n^2x\right).\left(x+y\right)>=\left(m^2+2mn+n^2\right).xy\)(vì x,y,m^2,n^2 >= 0)
<=> m2xy + n2xy + m2y2 + n2x2 >= m2xy + n2xy + 2mnxy
<=> n2x2 + m2y2 >= 2mnxy (luôn đúng) (bất đẳng thức cosi).
Vậy ....
dùng bđt phụ \(\frac{x^2}{a}+\frac{y^2}{b}\ge\frac{\left(x+y\right)^2}{a+b}\) với bđt Cô-si nhé
a) \(\text{ }x^4+y^4\ge x^3y+xy^3\)
\(\Leftrightarrow x^4+y^4-x^3y-xy^3\ge0\)
\(\Leftrightarrow x^3\left(x-y\right)-y^3\left(x-y\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\left(x^2+xy+y^2\right)\ge0\)(ĐPCM)
*NOTE: chứng minh đc vì (x-y)^2 >= 0 ; x^2 +xy +y^2 > 0
mình cũng làm đến nơi rồi nhưng sợ x^2+xy+y^2 chưa chắc lớn hơn 0 thanks bạn nhé
theo bất đẳng thức côsi thì
\(x+\frac{1}{x}\ge2\sqrt{x\times\frac{1}{x}}=2\)
\(\Rightarrow\left(x+\frac{1}{x}\right)^2\ge2^2=4\)(1)
tương tự \(\left(y+\frac{1}{y}\right)^2\ge4\)(2)
Từ (1),(2)\(\Rightarrow\)đpcm
Áp dụng bđt AM-GM ta có:
\(x+\frac{1}{x}\ge2\sqrt{x.\frac{1}{x}}=2\)
\(\Rightarrow\left(x+\frac{1}{x}\right)^2\ge4\)
CMTT \(\left(y+\frac{1}{y}\right)^2\ge4\)
\(\Rightarrow\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\ge4\left(dpcm\right)\)
Dấu"="xảy ra \(\Leftrightarrow x=y=1\)
Lời giải:
Áp dụng BĐT AM-GM:
$2=x+y\geq 2\sqrt{xy}\Rightarrow xy\leq 1$
$x^2y^2(x^2+y^2)\leq xy(x^2+y^2)=\frac{1}{2}.2xy(x^2+y^2)$
$\leq \frac{1}{2}(\frac{2xy+x^2+y^2}{2})^2$=\frac{1}{8}(x+y)^4=\frac{1}{8}.16=2$
Ta có đpcm
Dấu "=" xảy ra khi $x=y=1$