Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của KHANH QUYNH MAI PHAM - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo!
Câu trả lời trước bị sai nên làm lại.
Ta có:Q=\(\dfrac{2y+3x}{xy}+\dfrac{6}{3x+2y}=\dfrac{3x+2y}{6}+\dfrac{6}{3x+2y}\)vì xy=6
Đặt t=3x+2y => t\(\ge2\sqrt{2.y.3.x}\)=12
Theo bđt cô si và t \(\ge\)12 ta được :
Q=\(\left(\dfrac{t}{6}+\dfrac{24}{t}\right)-\dfrac{18}{t}\ge2\sqrt{\dfrac{t}{6}.\dfrac{24}{t}}-\dfrac{18}{t}=\dfrac{5}{2}\)
Đẳng thức xảy ra <=> x=2 và y=3
\(Q=\dfrac{2}{x}+\dfrac{3}{y}+\dfrac{6}{3x+2y}\\ Q=\dfrac{2y+3x}{xy}+\dfrac{6}{3x+2y}\)
Áp dụng bất đẳng thức Cô si cho hai số không âm và thay xy=6 vào ta được
\(Q\ge2\sqrt{\dfrac{2y+3x}{6}\times\dfrac{6}{2y+3x}}\\ Q\ge2\)
Đẳng thức xảy ra <=> \(\left(3x+2y\right)^2\) =36 và xy=6
<=> x=2,y=3
Cho x > 0 , y > 0 và \(x+y\ge6\). Tìm GTNN của biểu thức P = 3x + 2y + \(\frac{6}{x}+\frac{8}{y}\)
Ta có : P = \(3x+2y+\frac{6}{x}+\frac{8}{y}\)
\(\Rightarrow P=\left[\frac{6}{x}+\frac{3}{2}x\right]+\left[\frac{8}{y}+\frac{1}{2}y\right]+(\frac{3}{2})(x+y)\)
\(\Rightarrow6+4+\frac{3}{2}\cdot6\)
\(\Rightarrow A\ge19\)
Vậy Amin = 19 => x = 2 với y = 4
3x=2y
nên x/2=y/3
Đặt x/2=y/3=k
=>x=2k; y=3k
\(P=\dfrac{\left(2k\right)^2-2k\cdot3k+\left(3k\right)^2}{\left(2k\right)^2+2k\cdot3k+\left(3k\right)^2}\)
\(=\dfrac{4k^2-6k^2+9k^2}{4k^2+6k^2+9k^2}=\dfrac{4-6+9}{4+6+9}=\dfrac{7}{19}\)
Đặt xy = a .
Ta có x + y = 1 => x^3 + y^3 = 1 - 3xy ( mũ 3 hai vế )
* Ta có a = xy \(\le\) \(\frac{\left(x+y\right)^2}{4}\) = \(\frac{1}{4}\)
=> P = \(\frac{1}{1-3xy}\)+\(\frac{1}{xy}\)= \(\frac{1-2a}{a-3a^2}\).
Để tìm min P thì ta tìm max \(\frac{1}{P}\)= Q <=> Q = \(\frac{a-3a^2}{1-2a}\)
Đặt A=(a-3a^2 )/(1-2a)
<=> A-2Aa=a-3a^2
<=> 3a^2 -a(1+2A)+A=0
Giải delta >=0 là 1 biểu thức theo A
từ đó tìm được min và max A
\(A=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\).Áp dụng BĐT Cauchy-Schwarz,ta có:
\(=\left(1-\frac{1}{x+1}\right)+\left(1-\frac{1}{y+1}\right)+\left(1-\frac{1}{z+1}\right)\)
\(=\left(1+1+1\right)-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)
\(\ge3-\frac{9}{\left(x+y+z\right)+\left(1+1+1\right)}=\frac{3}{4}\)
Dấu "=" xảy ra khi x = y = z = 1/3
Vậy A min = 3/4 khi x=y=z=1/3