Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Le Tran Anh này, bạn biết làm không mà bảo ng khác ngu? Nếu biết thì giải đi...

Áp dụng bất đẳng thức Cauchy-Schwarz, ta được:
\(\left(9x^3+3y^2+z\right)\left(\frac{1}{9x}+\frac{1}{3}+z\right)\ge\left(x+y+z\right)^2\)
\(\Rightarrow\frac{x}{9x^3+3y^2+z}\le\frac{x\left(\frac{1}{9x}+\frac{1}{3}+z\right)}{\left(x+y+z\right)^2}=\frac{\frac{1}{9}+\frac{x}{3}+zx}{\left(x+y+z\right)^2}\)(1)
Hoàn toàn tương tự, ta có: \(\frac{y}{9y^3+3z^2+x}\le\frac{\frac{1}{9}+\frac{y}{3}+xy}{\left(x+y+z\right)^2}\)(2); \(\frac{z}{9z^3+3x^2+y}\le\frac{\frac{1}{9}+\frac{z}{3}+yz}{\left(x+y+z\right)^2}\)(3)
Cộng theo vế của 3 bất đẳng thức (1), (2), (3), ta được:
\(\frac{x}{9x^3+3y^2+z}+\frac{y}{9y^3+3z^2+x}+\frac{z}{9z^3+3x^2+y}\)\(\le\frac{\frac{1}{9}.3+\frac{x+y+z}{3}+xy+yz+zx}{\left(x+y+z\right)^2}\)
\(\le\frac{\frac{1}{9}.3+\frac{x+y+z}{3}+\frac{\left(x+y+z\right)^2}{3}}{\left(x+y+z\right)^2}=1\)(*)
Mặt khác, có: \(2017\left(xy+yz+zx\right)\le2017.\frac{\left(x+y+z\right)^2}{3}=\frac{2017}{3}\)(**)
Từ (*) và (**) suy ra \(A=\frac{x}{9x^3+3y^2+z}+\frac{y}{9y^3+3z^2+x}+\frac{z}{9z^3+3x^2+y}+2017\left(xy+yz+zx\right)\)
\(\le1+\frac{2017}{3}=\frac{2020}{3}\)
Đẳng thức xảy ra khi \(x=y=z=\frac{1}{3}\)

\(5\le xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}\)\(\Leftrightarrow\)\(x+y+z\ge\sqrt{15}\)
\(\frac{x^2}{\sqrt{8x^2+3y^2+14xy}}=\frac{x^2}{\sqrt{8x^2+2xy+3y^2+12xy}}\ge\frac{x^2}{\sqrt{9x^2+12xy+4y^2}}=\frac{x^2}{3x+2y}\)
\(A\ge sigma\frac{x^2}{3x+2y}\ge\frac{\left(x+y+z\right)^2}{5\left(x+y+z\right)}=\frac{x+y+z}{5}\ge\sqrt{\frac{3}{5}}\)
Dấu "=" xảy ra khi \(x=y=z=\sqrt{\frac{5}{3}}\)

\(x^2+5=x^2+xy+yz+zx=\left(x+y\right)\left(x+z\right)\)
\(\Rightarrow P=\frac{3x+3y+2z}{\sqrt{6\left(x+y\right)\left(x+z\right)}+\sqrt{6\left(x+y\right)\left(y+z\right)}+\sqrt{\left(x+z\right)\left(y+z\right)}}\)
\(P=\frac{3x+3y+2z}{\sqrt{\left(3x+3y\right)\left(2x+2z\right)}+\sqrt{\left(3x+3y\right)\left(2y+2z\right)}+\sqrt{\left(x+z\right)\left(y+z\right)}}\)
\(P\ge\frac{2\left(3x+3y+2z\right)}{3x+3y+2x+2z+3x+3y+2y+2z+x+z+y+z}\)
\(P\ge\frac{2\left(3x+3y+2z\right)}{9x+9y+6z}=\frac{2\left(3x+3y+2z\right)}{3\left(3x+3y+2z\right)}=\frac{2}{3}\)
\(P_{min}=\frac{2}{3}\) khi \(\left\{{}\begin{matrix}x=y=1\\z=2\end{matrix}\right.\)

\(Q=\Sigma\frac{x^4}{x^2+\sqrt{xy.zx}}\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^2+y^2+z^2+xy+yz+zx}\ge\frac{x^2+y^2+z^2}{2}\ge\frac{\left(x+y+z\right)^2}{6}=\frac{3}{2}\)
Dấu "=" xảy ra khi x=y=z=1

Lời giải:
Áp dụng BĐT AM-GM ta có:
\(\sqrt{6(x^2+5)}=\sqrt{6(x^2+xy+yz+xz)}=\sqrt{6(x+y)(x+z)}=\sqrt{(3x+3y)(2x+2z)}\leq \frac{3x+3y+2x+2z}{2}\)
\(\sqrt{6(y^2+5)}=\sqrt{6(y^2+xy+yz+xz)}=\sqrt{6(y+x)(y+z)}=\sqrt{(3y+3x)(2y+2z)}\leq \frac{3y+3x+2y+2z}{2}\)
\(\sqrt{z^2+5}=\sqrt{z^2+xy+yz+xz}=\sqrt{(z+x)(z+y)}\leq \frac{z+x+z+y}{2}\)
Cộng theo vế thu được:
\(\sqrt{6(x^2+5)}+\sqrt{6(y^2+5)}+\sqrt{z^2+5}\leq \frac{3(3x+3y+2z)}{2}\)
\(\Rightarrow P\geq \frac{3x+3y+2z}{\frac{3}{2}(3x+3y+2z)}=\frac{2}{3}\)
Vậy $P_{\min}=\frac{2}{3}$

Thay \(xy+yz+zx=5\) vào P, ta có:
\(P=\frac{3x+3y+2z}{\sqrt{6\left(x+y\right)\left(x+z\right)}+\sqrt{6\left(y+z\right)\left(y+x\right)}+\sqrt{\left(z+x\right)\left(z+y\right)}}\)
Áp dụng bất đẳng thức Cô-si, ta có:
\(\sqrt{6\left(x+y\right)\left(x+z\right)}\le\frac{3\left(x+y\right)+2\left(x+z\right)}{2}\)
\(\sqrt{6\left(y+z\right)\left(y+x\right)}\le\frac{3\left(y+x\right)+2\left(y+z\right)}{2}\)
\(\sqrt{\left(z+x\right)\left(z+y\right)}\le\frac{\left(z+x\right)+\left(z+y\right)}{2}\)
Cộng vế theo vế các bất đẳng thức cùng chiều, ta đươc:
\(\sqrt{6\left(x+y\right)\left(x+z\right)}+\sqrt{6\left(y+z\right)\left(y+x\right)}+\sqrt{\left(z+x\right)\left(z+y\right)}\le\frac{9}{2}x+\frac{9}{2}y+3z\)
\(\Rightarrow P\ge\frac{3x+3y+2z}{\frac{9}{2}x+\frac{9}{2}y+3z}=\frac{3x+3y+2z}{\frac{3}{2}\left(3x+3y+2z\right)}=\frac{2}{3}\)
Dấu "=" khi \(\hept{\begin{cases}3\left(x+y\right)=2\left(y+z\right)=2\left(z+x\right)\\z+y=z+x\\xy+yz+zx=5\end{cases}\Leftrightarrow\hept{\begin{cases}x=y=1\\z=2\end{cases}}}\)