Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x}{2}=\frac{y}{3}=>\frac{x^2}{4}=\frac{y^2}{9}=>\frac{x^2}{4}.\frac{y^2}{9}=\frac{y^2}{9}.\frac{y^2}{9}=>\frac{x^2y^2}{36}=\frac{y^4}{81}=\frac{576}{36}=16\)
=>y4=16.81=1296=>y=-36,36
-Với y=36=>\(\frac{x}{2}=\frac{y}{3}=\frac{36}{3}=12=>x=2.12=24\)
-Với y=-36=>\(\frac{x}{2}=\frac{y}{3}=\frac{-36}{3}=-12=>x=2.-12=-24\)
x2y2=4=>(xy)2=4
=>xy=-2;2 (1)
x/2=4/y=>xy=8 (2)
=>(1) và (2) mâu thuẫn nhau
=>không có cặp x;y nào
vậy có không cặp x;y
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{y^2-x^2}{3}=\frac{y^2+x^2}{5}=\frac{y^2-x^2+y^2+x^2}{3+5}=\frac{y^2+y^2}{8}=\frac{2y^2}{8}\)
\(\Rightarrow\frac{y^2-x^2}{3}=\frac{2y^2}{8}\)
\(\Rightarrow\frac{y^2-x^2}{3}=\frac{y^2}{4}\)
\(\Rightarrow4y^2-4x^2=3y^2\)
\(\Rightarrow4y^2-3y^2=4x^2\)
\(\Rightarrow y^2=4x^2\)
Thế vào \(x^{10}.y^{10}=1024\), ta có:
\(x^{10}.\left(y^2\right)^5=1024\)
\(x^{10}.\left(4x^2\right)^5=1024\)
\(\Rightarrow1024.x^{10}.x^{10}=1024\) ( cái này thì ko chắc )
\(\Rightarrow x^{20}=1\)
\(\Rightarrow x=1;x=-1\)
\(\Rightarrow y=2;y=-2\)
Vậy có 2 cặp ( x ; y ) thỏa mãn.
\(\frac{y^2-x^2}{3}=\frac{y^2+x^2}{5}\)( từ đây ta thấy \(y^2-x^2;y^2+x^2\)cùng dấu )
\(\Rightarrow5y^2-5x^2=3y^2+3x^2\)
\(2y^2=8x^2\)
\(y^2=\left(2x\right)^2\)
\(\Rightarrow\left[\begin{array}{nghiempt}y=2x\\y=-2x\end{array}\right.\)
\(x^{10}y^{10}=1024\Rightarrow\left[\begin{array}{nghiempt}xy=2\\xy=-2\end{array}\right.\)
Với \(xy=2\)
\(+y=2x\Rightarrow\left(x;y\right)\in\left\{\left(2;1\right);\left(-2;-1\right)\right\}\)
\(+y=-2x\Rightarrow\left(x;y\right)\in\left\{\left(-2;1\right);\left(2;-1\right)\right\}\)
Với \(xy=-2\)
\(+y=2x\Rightarrow\left(x;y\right)\in\left\{\left(-2;1\right);\left(2;-1\right)\right\}\)
\(+y=-2x\Rightarrow\left(x;y\right)\in\left\{\left(2;1\right);\left(-2;-1\right)\right\}\)
Tóm lại ta có :
\(\left(x;y\right)\in\left\{\left(-2;1\right);\left(2;-1\right);\left(2;1\right);\left(-2;-1\right)\right\}\)
chết nhầm cho sửa lại
Đặt \(\frac{x}{3}=-\frac{y}{7}=k\)
\(\Rightarrow\frac{x}{3}=3k;-\frac{y}{7}=-7k\)
Theo đề bài ra , ta có :
\(3k.-7k=-189\)
\(\Leftrightarrow-21k^2=-189\)
\(\Leftrightarrow k^2=9\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}k=3\\k=-3\end{array}\right.\)
Khi \(k=3\) , thì :
\(\left[\begin{array}{nghiempt}x=6\\y=-21\end{array}\right.\)
Khi \(k=-3\) , thì :
\(\left[\begin{array}{nghiempt}x=-6\\y=21\end{array}\right.\)
Vậy ................
Đặt \(\frac{x}{3}=-\frac{y}{7}=k\)
\(\Rightarrow\frac{x}{3}=3k;-\frac{y}{7}=-7k\)
Theo đề bài ta có :
\(3k.-7k=-189\)
\(\Leftrightarrow-21k^2=-189\)
\(\Leftrightarrow k^2=9\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}k=9\\k=-9\end{array}\right.\)
Khi \(k=9\) , thì :
\(\left[\begin{array}{nghiempt}x=27\\y=-63\end{array}\right.\)
Khi \(k=-9\) , thì :
\(\left[\begin{array}{nghiempt}x=-27\\x=63\end{array}\right.\)
Vậy .................
Đề câu trả lời trên là:
Tìm x, y, z thuộc Z, biết
a) |x| + |-x|= 3-x
b) x6 −1y =12
c) 2x = 3y; 5x = 7z và 3x - 7y +5z = 30
Lời giải:
Đặt \(\frac{x}{2}=\frac{y}{3}=t\Rightarrow x=2t; y=3t\)
Khi đó:
\(x^2y^2=576\)
\(\Leftrightarrow (2t)^2(3t)^2=576\Leftrightarrow 36t^4=576\)
\(\Rightarrow t^4=16=(2)^4=(-2)^4\Rightarrow t=\pm 2\)
Nếu \(t=2\Rightarrow x=2t=4; y=3t=6\). Ta có cặp \((x,y)=(4,6)\)
Nếu \(t=-2\Rightarrow x=2t=-4; y=3t=-6\). Ta có cặp \((x,y)=(-4,-6)\)