K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2020

Câu 3 :

\(\frac{n^6+206}{n^2+2}=n^2+2n^2+4+\frac{198}{n ^2}\)

Để \(n^2+2\) là ước số của \(n^6+206\)\(n^2+2\in Zv\text{à}n^2+2>0\forall n\)

=> n^2 +2 thuộc tập ước dương của 198

Lập bảng ta được các giá trị n thỏa mãn là : 1,2,3,4,8,14

Kl:...

1 tháng 5 2020

Câu 1 :

Xét a+b+c=0 \(\Rightarrow\left\{{}\begin{matrix}a+c=-b\\b+c=-a\\a+b=-c\end{matrix}\right.\)

\(\Rightarrow A=\frac{a+b}{b}.\frac{b+c}{c}.\frac{c+a}{a}=-1\)

Xét a+b+c \(\ne0\)

Áp dụng t/c dãy tỉ số bằng nhau:

\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)

\(\Rightarrow\left\{{}\begin{matrix}a+c=2b\\b+c=2a\\a+b=2c\end{matrix}\right.\)

mà a,b,c đôi một khác nhau và khác 0

\(\Rightarrow Lo\text{ại}\)

Vậy A=-1

13 tháng 12 2017

Ta có: \(x^2+\frac{1}{x^2}=7\)

\(\Rightarrow x^2+2+\frac{1}{x^2}=9\)

\(\Rightarrow\left(x+\frac{1}{x}\right)^2=9\)

Mà x>0

\(\Rightarrow x+\frac{1}{x}=3\)

Lại có: \(x^3+\frac{1}{x^3}=\left(x+\frac{1}{x}\right)\left(x^2-1+\frac{1}{x^2}\right)=3\left(7-1\right)=18\)

\(\Rightarrow\left(x^2+\frac{1}{x^2}\right)\left(x^3+\frac{1}{x^3}\right)=x^5+\frac{1}{x^5}+x+\frac{1}{x}\)

\(\Rightarrow x^5+\frac{1}{x^5}=7.18-3=123\)

2 tháng 1 2018

a,  x^2 - 2xy + 2y^2 - 2x + 6y + 5 =0

<=> x^2  -  2x(y+1)  + y^2 + 2y + 1 + y^2 + 4y + 4 = 0

<=> x^2  - 2x(y+1) + (y+1)^2   +  (y+2)^2   =0

<=> (x-y-1)^2   +    (y+2)^2   =0

<=>   x-y-1  = 0 và y+2 =0

<=> y = -2     =>  x=  -1

Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)

\(\Rightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=4\)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2abc\left(a+b+c\right)}{a^2b^2c^2}=4\)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2=4\)

\(\Leftrightarrow A=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=2\)

6 tháng 10 2018

\(\left(x+\frac{1}{x}\right)^2=x^2+\frac{1}{x^2}+2=7+2=9\)

\(\Rightarrow x+\frac{1}{x}=3\) (vì x > 0)

Mặt khác, \(x^3+\frac{1}{x^3}=\left(x+\frac{1}{x}\right)^3-3.x.\frac{1}{x}\left(x+\frac{1}{x}\right)=3^3-3.3=18\)

Ta có: \(B=x^5+\frac{1}{x^5}=\left(x^2+\frac{1}{x^2}\right)\left(x^3+\frac{1}{x^3}\right)-\left(x+\frac{1}{x}\right)\)

                                      \(=7.18-3=123\)

Vậy B = 123

Chúc bạn học tốt.

                            

24 tháng 2 2017

câu 1 là :từ a/x + b/y + c/z =0 suy ra (ayz+bxz+cxy)/xyz =0 suy ra ayz+bxz+cxy=0 (1)

vì x/a + y/b + z/c =1 (gt) suy ra (x/a + y/b + z/c )^2 = 1^2 . suy ra x^2/a^2 + y^2/b^2 + z^2/c^2 + 2(xy/ab + yz/bc + xz/ac) =1

suy ra x^2/a^2 + y^2/b^2 + z^2/c^2 + 2[(ayz+bxz+cxy)/abc = 1 (2)

Từ (1) và (2) suy ra x^2/a^2 + y^2/b^2 + z^2/c^2 =1 (đpcm)

24 tháng 2 2017

câu 3 98