\(P=\dfrac{x+2y-3z}{x-2y+3z}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12 2018

Theo bài ra, ta có :

\(x:y:z=5:4:3\) \(\Rightarrow\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{z}{5}\)

Đặt \(\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{z}{3}=k\) \(\Rightarrow\left\{{}\begin{matrix}x=5k\\y=4k\\z=3k\end{matrix}\right.\)

\(\Rightarrow P=\dfrac{x+2y-3z}{x-2y+3z}=\dfrac{5k+2.4k-3.3k}{5k-2.4k+3.3k}=\dfrac{5k+8k-9k}{5k-8k+9k}=\dfrac{4k}{6k}=\dfrac{2}{3}\)

Vậy \(P=\dfrac{2}{3}\)

6 tháng 4 2017

Vì x,y,z tỉ lệ với 5,4,3 nên ta có \(\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{z}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{z}{3}=\dfrac{2y}{8}=\dfrac{3z}{9}=\dfrac{x+2y-3z}{5+8-9}=\dfrac{x+2y-3z}{4}\)
\(\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{z}{3}=\dfrac{2y}{8}=\dfrac{3z}{9}=\dfrac{x-2y+3z}{5-8+9}=\dfrac{x-2y+3z}{6}\)
Do đó \(\dfrac{x+2y-3z}{4}=\dfrac{x-2y+3z}{6}\)
=> \(\dfrac{x+2y-3z}{x-2y+3z}=\dfrac{4}{6}=\dfrac{2}{3}\)
Vậy P = 2/3

6 tháng 4 2017

Nhưng đề bài có nói x, y, z tỉ lệ lần lượt vs 5; 4; 3 đâu

30 tháng 10 2017

Hỏi đáp ToánMk ko chắc nhé

3 tháng 10 2017

Đặt \(\frac{x}{5}=\frac{y}{4}=\frac{z}{3}=k\Rightarrow x=5k;y=4k;z=3k\)

=>\(P=\frac{x+2y-3z}{x-2y+3z}=\frac{5k+2.4k-3.3k}{5k-2.4k+3.3k}=\frac{5k+8k-9k}{5k-8k+9k}=\frac{4k}{6k}=\frac{2}{3}\)

30 tháng 10 2018

hello

22 tháng 11 2017

D = \(\frac{2}{3}\) . 

22 tháng 11 2017

Ta có : \(\frac{x}{5}=\frac{y}{4}=\frac{z}{3}\)

Đặt \(\frac{x}{5}=\frac{y}{4}=\frac{z}{3}=k\)

\(\Rightarrow x=5k\)\(y=4k\)\(z=3k\)

\(\Rightarrow D=\frac{x+2y-3z}{x-2y+3z}=\frac{5k+2\left(4k\right)-3\left(3k\right)}{5k-2\left(4k\right)+3\left(3k\right)}\)

\(D=\frac{5k+8k-9k}{5k-8k+9k}=\frac{4k}{6k}=\frac{2}{3}\)

VẬY, \(D=\frac{2}{3}\)

3 tháng 10 2017

Ta có x,y,z tỉ lệ với 5,4,3

=> \(\frac{x}{5}\)=\(\frac{y}{4}\)=\(\frac{z}{3}\)

=> x=5.k , y=4.k , z=3.k

=> y =\(\frac{x+2y-3z}{x-2y+3z}\)\(\frac{5k+2.\left(4k\right)-3.\left(3k\right)}{5k-2.\left(4k\right)+3.\left(3k\right)}\)\(\frac{5k+8k-9k}{5k-8k+9k}\)\(\frac{4k}{6k}\)\(\frac{2}{3}\)

vậy y = \(\frac{2}{3}\)

3 tháng 10 2017

y=2/3 đúng đo bạn

8 tháng 11 2017

\(\dfrac{3x-2y}{4}=\dfrac{2z-4x}{3}=\dfrac{4y-3z}{2}\)

\(\Leftrightarrow\dfrac{4\left(3x-2y\right)}{16}=\dfrac{3\left(2z-4x\right)}{9}=\dfrac{2\left(4y-3z\right)}{4}\)

\(\Leftrightarrow\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}\)

Áp dụng t,c dãy tỉ số bằng nhau ta có :

\(\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}=\dfrac{12x-8y+6z-12x+8y-6z}{16+9+4}=\dfrac{0}{29}=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{12x-8y}{16}=0\\\dfrac{2z-4x}{3}=0\\\dfrac{4y-3z}{2}=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}12x-8y=0\\2x-4z=0\\4y-3z=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{y}{3}\\\dfrac{y}{3}=\dfrac{z}{4}\\\dfrac{z}{4}=\dfrac{x}{2}\end{matrix}\right.\)

\(\Leftrightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\left(đpcm\right)\)

8 tháng 11 2017

0 từ đâu chui ra vậy bạn với lại đpcm là j?

14 tháng 8 2017

\(\dfrac{7x-3z}{5}=\dfrac{3y-5x}{7}=\dfrac{5z-7y}{3}\)

\(\Rightarrow\dfrac{35x-15z}{25}=\dfrac{21y-35x}{49}=\dfrac{15z-21y}{9}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{35x-15z}{25}=\dfrac{21y-35x}{49}=\dfrac{15z-21y}{9}\)

\(=\dfrac{35x-15z+21y-35x+15z-21y}{25+49+9}\)

\(=\dfrac{0}{25+49+9}=0\)

\(\Rightarrow\left\{{}\begin{matrix}7x=3z\Rightarrow\dfrac{x}{3}=\dfrac{z}{7}\\3y=5x\Rightarrow\dfrac{x}{3}=\dfrac{y}{5}\\5z=7y\Rightarrow\dfrac{z}{7}=\dfrac{y}{5}\end{matrix}\right.\)

\(\Rightarrow\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{7}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{7}=\dfrac{x+y+z}{3+5+7}=\dfrac{30}{15}=2\)

\(\Rightarrow\left\{{}\begin{matrix}x=2.3=6\\y=2.5=10\\z=2.7=14\end{matrix}\right.\)

Tương tự

29 tháng 12 2018

Có: x,y,z tỉ lệ với 5;4;3

\(\Rightarrow\frac{x}{5}=\frac{y}{4}=\frac{z}{3}\)

Đặt \(\frac{x}{5}=\frac{y}{4}=\frac{z}{3}=k\)

\(\Rightarrow x=5k;y=4k;z=3k\)

\(P=\frac{x+2y-3z}{x-2y+3z}\)

\(\Rightarrow P=\frac{5k+2.4k-3.3k}{5k-2.4k+3.3k}\)

\(\Leftrightarrow P=\frac{4k}{6k}\)

\(\Leftrightarrow P=\frac{2}{3}\)

Vậy \(P=\frac{2}{3}\)