Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(y^2=xz\) ; \(z^2=yt\) và \(y^3+z^3+t^3\ne0\)
CMR:\(\dfrac{y^3+z^3+x^3}{y^3+z^3+t^3}=\dfrac{x}{t}\)
Ta có :
\(y^2=xz\Leftrightarrow\dfrac{x}{y}=\dfrac{y}{z}\left(1\right)\)
\(z^2=yt\Leftrightarrow\dfrac{x}{y}=\dfrac{t}{x}\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\Leftrightarrow\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{t}{x}\)
\(\Leftrightarrow\dfrac{x^3}{y^3}=\dfrac{y^3}{z^3}=\dfrac{t^3}{x^3}\)
Áp dụng t,c dãy tỉ số bằng nhau ta có :
\(\dfrac{x^3}{y^3}=\dfrac{y^3}{z^3}=\dfrac{t^3}{x^3}=\dfrac{x^3+y^3+t^3}{y^3+z^3+x^3}\)
\(\Leftrightarrow\dfrac{x^3}{t^3}=\dfrac{y^3+z^3+x^3}{y^3+z^3+x^3}\left(đpcm\right)\)
Lời giải:
\(y^2=xz\Rightarrow \frac{y}{z}=\frac{x}{y}\)
\(z^2=yt\Rightarrow \frac{z}{t}=\frac{y}{z}\)
Vậy \(\frac{x}{y}=\frac{y}{z}=\frac{z}{t}\)
Ta có:
\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}\Rightarrow \frac{x^3}{y^3}=\frac{y^3}{z^3}=\frac{z^3}{t^3}=\frac{x^3+y^3+z^3}{y^3+z^3+t^3}(1)\) (áp dụng tính chất dãy tỉ số bằng nhau)
\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}\Rightarrow \frac{x^3}{y^3}=\frac{x}{y}.\frac{y}{z}.\frac{z}{t}=\frac{x}{t}(2)\)
Từ \((1);(2)\Rightarrow \frac{x^3+y^3+z^3}{y^3+z^3+t^3}=\frac{x}{t}\) (đpcm)
Bạn tham khảo tại đây:
https://hoc24.vn/cau-hoi/cho-xyz-khac-0-thoa-man-2-xy-3yz4zx-tinh-p-dfracxydfracyzdfraczx.3861996653762
Bạn tham khảo tại đây:
Câu hỏi của Bùi Thị Phương Anh - Toán lớp 7 | Học trực tuyến