K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2017

\(y^2=xz;x^2=yt\)

\(\Rightarrow\dfrac{x}{y}=\dfrac{y}{z};\dfrac{x}{y}=\dfrac{t}{x}\)

\(\Rightarrow\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{t}{x}\)

Đặt:

\(\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{t}{x}=k\) \(\Rightarrow\left\{{}\begin{matrix}x=yk\\y=zk\\t=xk\end{matrix}\right.\)

Thay vào tính

17 tháng 8 2017

Theo đề bài đã cho, ta có:
\(y^2\)=xz => \(\dfrac{x}{y}\)=\(\dfrac{y}{z}\) (1)
\(z^2\)=yt => \(\dfrac{y}{z}\)=\(\dfrac{z}{t}\)(2)
Từ (1) và (2) suy ra:
\(\dfrac{x}{y}\)=\(\dfrac{y}{z}\)=\(\dfrac{z}{t}\)=\(\dfrac{x^3}{y^3}\)=\(\dfrac{y^3}{z^3}\)=\(\dfrac{z^3}{t^3}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{x^3}{y^3}\)=\(\dfrac{y^3}{z^3}\)=\(\dfrac{z^3}{t^3}\)=\(\dfrac{x^3+y^3+z^3}{y^3+z^3+t^3}\)
Mặt khác\(\dfrac{x^3}{y^3}\)=\(\dfrac{y^3}{z^3}\) =\(\dfrac{z^3}{t^3}\)=\(\dfrac{x^3y^3z^3}{y^3z^3t^3}\)=\(\dfrac{x^3}{t^3}\)
Từđó ta suy ra \(\dfrac{x^3+y^3+z^3}{y^3+z^3+t^3}\)= \(\dfrac{x^3}{t^3}\)
( bạn ghi sai đề nên mk đã sửa lại )

21 tháng 8 2017

Ta có :\(y^2=xz\Rightarrow\dfrac{x}{y}=\dfrac{y}{z}\)(1)

\(x^2=yt\Rightarrow\dfrac{x}{y}=\dfrac{t}{x}\) (2)

Từ (1) và (2) , ta suy ra :\(\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{t}{x}\)

Đặt \(\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{t}{x}=k\)\(\)(3)

\(\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{t}{x}=k\Rightarrow k^3=\dfrac{x^3}{y^3}=\dfrac{y^3}{z^3}=\dfrac{t^3}{x^3}=\dfrac{x^3+y^3+t^3}{y^3+z^3+x^3}\)

\(\Rightarrow\dfrac{t^3}{x^3}=\dfrac{x^3+y^3+t^3}{y^3+z^3+x^3}\)

\(\Rightarrow\dfrac{x^3}{t^3}=\dfrac{x^3+y^3+z^3}{x^3+y^3+t^3}\)

\(\Rightarrow\dfrac{x^3+y^3+z^3}{x^3+y^3+t^3}=\left(\dfrac{x}{t}\right)^3\)

Đề có sai không vậy bạn

21 tháng 8 2017

\(\left\{{}\begin{matrix}y^2=xz\\x^2=yt\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{y}=\dfrac{y}{z}\\\dfrac{x}{y}=\dfrac{t}{x}\end{matrix}\right.\)

\(\Rightarrow\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{t}{x}\)

Đặt:

\(\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{t}{x}=k\)

\(\Rightarrow\left\{{}\begin{matrix}x=yk\\y=zk\\t=xk\end{matrix}\right.\)

Thay vào tính :v

AH
Akai Haruma
Giáo viên
29 tháng 12 2018

Bạn tham khảo tại đây:

Câu hỏi của Bùi Thị Phương Anh - Toán lớp 7 | Học trực tuyến

25 tháng 11 2017

Ta có :

\(y^2=xz\Leftrightarrow\dfrac{x}{y}=\dfrac{y}{z}\left(1\right)\)

\(z^2=yt\Leftrightarrow\dfrac{x}{y}=\dfrac{t}{x}\left(2\right)\)

Từ \(\left(1\right)+\left(2\right)\Leftrightarrow\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{t}{x}\)

\(\Leftrightarrow\dfrac{x^3}{y^3}=\dfrac{y^3}{z^3}=\dfrac{t^3}{x^3}\)

Áp dụng t,c dãy tỉ số bằng nhau ta có :

\(\dfrac{x^3}{y^3}=\dfrac{y^3}{z^3}=\dfrac{t^3}{x^3}=\dfrac{x^3+y^3+t^3}{y^3+z^3+x^3}\)

\(\Leftrightarrow\dfrac{x^3}{t^3}=\dfrac{y^3+z^3+x^3}{y^3+z^3+x^3}\left(đpcm\right)\)

AH
Akai Haruma
Giáo viên
29 tháng 12 2018

Lời giải:

\(y^2=xz\Rightarrow \frac{y}{z}=\frac{x}{y}\)

\(z^2=yt\Rightarrow \frac{z}{t}=\frac{y}{z}\)

Vậy \(\frac{x}{y}=\frac{y}{z}=\frac{z}{t}\)

Ta có:

\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}\Rightarrow \frac{x^3}{y^3}=\frac{y^3}{z^3}=\frac{z^3}{t^3}=\frac{x^3+y^3+z^3}{y^3+z^3+t^3}(1)\) (áp dụng tính chất dãy tỉ số bằng nhau)

\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}\Rightarrow \frac{x^3}{y^3}=\frac{x}{y}.\frac{y}{z}.\frac{z}{t}=\frac{x}{t}(2)\)

Từ \((1);(2)\Rightarrow \frac{x^3+y^3+z^3}{y^3+z^3+t^3}=\frac{x}{t}\) (đpcm)

22 tháng 7 2019

sao ko ai trả lời vậy

Ta có: \(\left\{{}\begin{matrix}x^2=yz\\y^2=xz\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{y}=\dfrac{z}{x}\\\dfrac{x}{y}=\dfrac{y}{z}\end{matrix}\right.\Rightarrow\left\{\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{z}{x}\right\}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, Ta có:

\(\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{z}{x}=\dfrac{x+y+z}{y+z+x}=1\Rightarrow x=y=z\)

\(\Rightarrow P=3x^3.\left(\dfrac{1}{\left(3x\right)^3}\right)=\dfrac{3x^3}{27x^3}=\dfrac{1}{9}\)

Vậy \(P=\dfrac{1}{9}\)

11 tháng 4 2018

Thì ra là vậy

hihi...vui

20 tháng 7 2017

3a)Vì A là số nguyên

=>\(3n+9⋮n-4=>3n-12+21⋮n-4=>3.\left(n-4\right)+21⋮n-4\)

\(\text{3 . (n - 4)}⋮n-4\)

=>\(21⋮n-4=>n-4\inƯ\left(21\right)=\left\{-21;-7;-3;-1;1;3;7;21\right\}\)

(Vì n là số nguyên => n - 4 là 1 số nguyên)

=>\(n\in\left\{-17;-3;1;3;5;9;11;25\right\}\)

Ta có bảng sau:

n -17 -3 1 3 5 9 11 25
3n + 9 -42 0 12 18 24 36 42 84
n - 4 -21 -7 -3 -1 1 3 7 21
\(A=\dfrac{3n+9}{n-4}\) 2 0 -4 -18 24 12 6 4

Vậy.....

b)Vì B là số nguyên

=>\(2n-1⋮n+5=>2n+10-11⋮n+5=>2\left(n+5\right)-11⋮n+5\)

\(\text{2 ( n + 5)}⋮n+5\)

=>\(11⋮n+5=>n+5\in\left\{-11;-1;1;11\right\}\)

(Vì n là số nguyên=> n + 5 là số nguyên)

=> \(n\in\left\{-16;-6;-4;6\right\}\)

Ta có bảng sau:

n -16 -6 -4 6
2 n - 1 -33 -13 -9 11
n + 5 -11 -1 1 11
\(B=\dfrac{2n-1}{n+5}\) 3 13 -9

1

Vậy.......

20 tháng 7 2017

Bài 6 cậu chép đúng đề bài chứ??