\(\dfrac{x}{2}\)= \(\dfrac{y}{3}\);
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2017

a) \(\dfrac{x}{2}=\dfrac{y}{3};\dfrac{y}{5}=\dfrac{z}{4}\)\(x-y+z=-49\)

Ta có:

\(\dfrac{x}{2}=\dfrac{y}{3}\Rightarrow\dfrac{x}{10}=\dfrac{y}{15}\) (1)

\(\dfrac{y}{5}=\dfrac{z}{4}\Rightarrow\dfrac{y}{15}=\dfrac{z}{12}\) (2)

Từ (1) và (2) suy ra \(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{12}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{12}=\dfrac{x-y+z}{10-15+12}=\dfrac{-49}{7}=-7\)

Vậy \(\left\{{}\begin{matrix}x=\left(-7\right).10=-70\\y=\left(-7\right).15=-105\\z=\left(-7\right).12=-84\end{matrix}\right.\)

b) \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)\(x^2-y^2+2z^2=10\)

Ta có: \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\Rightarrow\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{2z^2}{32}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{2z^2}{32}=\dfrac{x^2-y^2+2z^2}{4-9+32}=\dfrac{10}{27}\)

Vậy ... (tự tính x, y, z nhé!)

18 tháng 10 2018

vãi ***** làm bài

3 tháng 12 2017

phần a

vì x/2= y/3

y/5= z/4

=>x/2 nhân 1.5 = y/3 nhân 1/5

=> y/5 nhân 1/3 = z/4 nhân 1/3

=>x/10 = y/15 (1)

=>y/15 = z/12 (2)

Từ (1) , (2) ta có :

x/10 = y/15 = z/12

áp dụng t/c......

=>x/10 = y/15 = z/12

=>x+y+z/10+15+12

=> -49/37

b lm tiếp bc tiếp theo nhé✔

Vì mk cmt đầu tiên lên b tích dùm m☢

26 tháng 9 2018

theo bài ra ta có:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)

dựa vào tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\\ =\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{2z^2}{32}\\ =\dfrac{x^2-y^2+2z^2}{4-9+32}=\dfrac{108}{27}=4\)

=>x=4.2=8

=>y=4.3=12 =>z=4.4=16 vậy x,y,z lần lượt là 8;12;16

28 tháng 9 2018

bạn có thể nhờ 1 số người khác giải hộ mình không

19 tháng 3 2017

4) Ta có: a2=bc => aa=bc =>\(\dfrac{a}{b}=\dfrac{c}{a}\)

Đặt \(\dfrac{a}{b}=\dfrac{c}{a}=k\left(k\ne0\right)\)

=> a=bk ; c=ak

+)\(\dfrac{a+b}{a-b}=\dfrac{bk+b}{bk-b}=\dfrac{b\left(k+1\right)}{b\left(k-1\right)}=\dfrac{k+1}{k-1}\left(1\right)\)

+) \(\dfrac{c+a}{c-a}=\dfrac{ak+a}{ak-a}=\dfrac{a\left(k+1\right)}{a\left(k-1\right)}=\dfrac{k+1}{k-1}\left(2\right)\)

Từ (1) và (2) => \(\dfrac{a+b}{a-b}=\dfrac{c+a}{c-a}\)

5) phải xét 2 trường họp dài lắm nên mình chả muốn làm ~~

23 tháng 12 2017

bài này dễ mà b

\(\dfrac{x}{2}\)=\(\dfrac{y}{3}\)=\(\dfrac{z}{4}\)

=> \(^{\dfrac{x_2}{4}}\)=\(\dfrac{y^2}{9}\)=\(\dfrac{x^2}{16}\)

=> ..............= \(\dfrac{3x^2}{48}\)

sau đó : áp dụng t/c dãy tỉ số = nhau ta có :

\(\dfrac{x^2}{4}\)=\(\dfrac{y^2}{9}\)=\(\dfrac{3x^2}{48}\)= \(\dfrac{x^2-y^2+3x^2}{4-9+48}\)= \(\dfrac{172}{43}\)=4

sau đó tíh kết qả các phân số trên

-Tíh cho mìh nha pạnyeu

23 tháng 12 2017

Bạn ơi, tại sao x2/4 lại bằng x2/16 vậy?

2. Tham khảo thêm tại đây nha bạn

https://hoc24.vn/hoi-dap/question/417550.html

30 tháng 12 2017

a)

Ta có: \(9x=5y=15z\Rightarrow\dfrac{9x}{45}=\dfrac{5y}{45}=\dfrac{15z}{45}\Rightarrow\dfrac{x}{5}=\dfrac{y}{9}=\dfrac{z}{3}\Rightarrow\dfrac{-x}{-5}=\dfrac{y}{9}=\dfrac{z}{3}_{\left(1\right)}\)

\(-x+y-z=11_{\left(2\right)}.\)

Từ \(_{\left(1\right)}\)\(_{\left(2\right)}\), kết hợp tính chất dãy tỉ só bằng nhau có:

\(\dfrac{-x}{-5}=\dfrac{y}{9}=\dfrac{z}{3}=\dfrac{-x+y-z}{-5+9-3}=\dfrac{11}{1}=11.\)

Từ đó: \(\left\{{}\begin{matrix}\dfrac{-x}{-5}=11\Rightarrow-x=-55\Rightarrow x=55.\\\dfrac{y}{9}=11\Rightarrow y=99.\\\dfrac{z}{3}=11\Rightarrow z=33.\end{matrix}\right.\)

Vậy.....

b); c); d); e) làm tương tự.

23 tháng 10 2018

\(\dfrac{x}{z}=\dfrac{z}{y}\Rightarrow\dfrac{x.z}{z.y}=\dfrac{x}{y}=\dfrac{x^2}{z^2}=\dfrac{z^2}{y^2}=\dfrac{x^2+z^2}{y^2+z^2}\)

23 tháng 10 2018

đăt \(\dfrac{x}{z}=\dfrac{z}{y}=k\)

=>\(\left\{{}\begin{matrix}x=zk\\z=yk\end{matrix}\right.\)=>\(\left\{{}\begin{matrix}x=yk^2\\z=yk\end{matrix}\right.\)

ta có :\(\dfrac{x}{y}=\dfrac{yk^2}{y}=k^2\left(1\right)\)

lại có \(\dfrac{x^2+z^2}{y^2+z^2}=\dfrac{y^2k^4+y^2k^2}{y^2+y^2k^2}=\dfrac{y^2k^2.\left(k^2+1\right)}{y^2.\left(1+k^2\right)}=k^2\left(2\right)\)

từ (1) và (2) => ĐPCM