Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
phần a
vì x/2= y/3
y/5= z/4
=>x/2 nhân 1.5 = y/3 nhân 1/5
=> y/5 nhân 1/3 = z/4 nhân 1/3
=>x/10 = y/15 (1)
=>y/15 = z/12 (2)
Từ (1) , (2) ta có :
x/10 = y/15 = z/12
áp dụng t/c......
=>x/10 = y/15 = z/12
=>x+y+z/10+15+12
=> -49/37
b lm tiếp bc tiếp theo nhé✔
Vì mk cmt đầu tiên lên b tích dùm m☢
theo bài ra ta có:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)
dựa vào tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\\ =\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{2z^2}{32}\\ =\dfrac{x^2-y^2+2z^2}{4-9+32}=\dfrac{108}{27}=4\)=>x=4.2=8
=>y=4.3=12 =>z=4.4=16 vậy x,y,z lần lượt là 8;12;16
4) Ta có: a2=bc => aa=bc =>\(\dfrac{a}{b}=\dfrac{c}{a}\)
Đặt \(\dfrac{a}{b}=\dfrac{c}{a}=k\left(k\ne0\right)\)
=> a=bk ; c=ak
+)\(\dfrac{a+b}{a-b}=\dfrac{bk+b}{bk-b}=\dfrac{b\left(k+1\right)}{b\left(k-1\right)}=\dfrac{k+1}{k-1}\left(1\right)\)
+) \(\dfrac{c+a}{c-a}=\dfrac{ak+a}{ak-a}=\dfrac{a\left(k+1\right)}{a\left(k-1\right)}=\dfrac{k+1}{k-1}\left(2\right)\)
Từ (1) và (2) => \(\dfrac{a+b}{a-b}=\dfrac{c+a}{c-a}\)
5) phải xét 2 trường họp dài lắm nên mình chả muốn làm ~~
bài này dễ mà b
Vì \(\dfrac{x}{2}\)=\(\dfrac{y}{3}\)=\(\dfrac{z}{4}\)
=> \(^{\dfrac{x_2}{4}}\)=\(\dfrac{y^2}{9}\)=\(\dfrac{x^2}{16}\)
=> ..............= \(\dfrac{3x^2}{48}\)
sau đó : áp dụng t/c dãy tỉ số = nhau ta có :
\(\dfrac{x^2}{4}\)=\(\dfrac{y^2}{9}\)=\(\dfrac{3x^2}{48}\)= \(\dfrac{x^2-y^2+3x^2}{4-9+48}\)= \(\dfrac{172}{43}\)=4
sau đó tíh kết qả các phân số trên
-Tíh cho mìh nha pạn
2. Tham khảo thêm tại đây nha bạn
https://hoc24.vn/hoi-dap/question/417550.html
a)
Ta có: \(9x=5y=15z\Rightarrow\dfrac{9x}{45}=\dfrac{5y}{45}=\dfrac{15z}{45}\Rightarrow\dfrac{x}{5}=\dfrac{y}{9}=\dfrac{z}{3}\Rightarrow\dfrac{-x}{-5}=\dfrac{y}{9}=\dfrac{z}{3}_{\left(1\right)}\)
và \(-x+y-z=11_{\left(2\right)}.\)
Từ \(_{\left(1\right)}\) và \(_{\left(2\right)}\), kết hợp tính chất dãy tỉ só bằng nhau có:
\(\dfrac{-x}{-5}=\dfrac{y}{9}=\dfrac{z}{3}=\dfrac{-x+y-z}{-5+9-3}=\dfrac{11}{1}=11.\)
Từ đó: \(\left\{{}\begin{matrix}\dfrac{-x}{-5}=11\Rightarrow-x=-55\Rightarrow x=55.\\\dfrac{y}{9}=11\Rightarrow y=99.\\\dfrac{z}{3}=11\Rightarrow z=33.\end{matrix}\right.\)
Vậy.....
b); c); d); e) làm tương tự.
\(\dfrac{x}{z}=\dfrac{z}{y}\Rightarrow\dfrac{x.z}{z.y}=\dfrac{x}{y}=\dfrac{x^2}{z^2}=\dfrac{z^2}{y^2}=\dfrac{x^2+z^2}{y^2+z^2}\)
đăt \(\dfrac{x}{z}=\dfrac{z}{y}=k\)
=>\(\left\{{}\begin{matrix}x=zk\\z=yk\end{matrix}\right.\)=>\(\left\{{}\begin{matrix}x=yk^2\\z=yk\end{matrix}\right.\)
ta có :\(\dfrac{x}{y}=\dfrac{yk^2}{y}=k^2\left(1\right)\)
lại có \(\dfrac{x^2+z^2}{y^2+z^2}=\dfrac{y^2k^4+y^2k^2}{y^2+y^2k^2}=\dfrac{y^2k^2.\left(k^2+1\right)}{y^2.\left(1+k^2\right)}=k^2\left(2\right)\)
từ (1) và (2) => ĐPCM
a) \(\dfrac{x}{2}=\dfrac{y}{3};\dfrac{y}{5}=\dfrac{z}{4}\) và \(x-y+z=-49\)
Ta có:
\(\dfrac{x}{2}=\dfrac{y}{3}\Rightarrow\dfrac{x}{10}=\dfrac{y}{15}\) (1)
\(\dfrac{y}{5}=\dfrac{z}{4}\Rightarrow\dfrac{y}{15}=\dfrac{z}{12}\) (2)
Từ (1) và (2) suy ra \(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{12}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{12}=\dfrac{x-y+z}{10-15+12}=\dfrac{-49}{7}=-7\)
Vậy \(\left\{{}\begin{matrix}x=\left(-7\right).10=-70\\y=\left(-7\right).15=-105\\z=\left(-7\right).12=-84\end{matrix}\right.\)
b) \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\) và \(x^2-y^2+2z^2=10\)
Ta có: \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\Rightarrow\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{2z^2}{32}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{2z^2}{32}=\dfrac{x^2-y^2+2z^2}{4-9+32}=\dfrac{10}{27}\)
Vậy ... (tự tính x, y, z nhé!)
vãi ***** làm bài