K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 5 2019

Áp dụng BĐT Cauchy=Schwarz ta có:

\(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}\Rightarrow x+y+z\le\sqrt{3}\)

Ta lại có:\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\forall x,y,z\)

\(\Leftrightarrow2\left(x^2+y^2+z^2\right)-2\left(xy+yz+zx\right)\ge0\)

\(\Leftrightarrow x^2+y^2+z^2\ge xy+yz+zx\)

\(\Rightarrow A\le\sqrt{3}+1\)

Dấu '=' xảy ra khi \(x=y=z=\frac{1}{\sqrt{3}}\)

29 tháng 5 2019

Em làm lại,cách này mà còn sai nữa thì em xin hàng ạ! Dù sao đi nữa cũng xin mọi người chịu khó góp ý giúp em để em càng ngày càng tiến bộ hơn nữa ạ! Thanks all !

*Tìm min

Đặt p = x + y + z; q = xy + yz + zx thì \(x^2+y^2+z^2=p^2-2q=1\Rightarrow q=\frac{p^2-1}{2}\)

Suy ra \(A=p+q=p+\frac{p^2-1}{2}=\frac{p^2+2p-1}{2}\)

\(=\frac{p^2+2p+1-2}{2}=\frac{\left(p+1\right)^2-2}{2}\ge-\frac{2}{2}=-1\)

Vậy giá trị nhỏ nhất của A là -1.

Dấu "=" xảy ra khi (x;y;z) = (0;0;-1) (chỗ này em không biết giải rõ thế nào nữa :v)

*Tìm max

Ta có BĐT sau: \(xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}\le x^2+y^2+z^2\)

Suy ra \(q\le\frac{p^2}{3}\le p^2-2q=1\) suy ra \(\hept{\begin{cases}q\le p^2-2q=1\\p^2\le3\left(p^2-2q\right)\end{cases}}\Leftrightarrow\hept{\begin{cases}q\le1\\p\le\sqrt{3\left(p^2-2q\right)}=\sqrt{3}\end{cases}}\)

Suy ra \(A=p+q\le\sqrt{3}+1\)

21 tháng 7 2019

Em thử, sai thì thôi

a) Đặt c - b =x; a - c = y suy ra b - a = -(x+y)

Ta có \(a^3x+b^3y-c^3\left(x+y\right)\)

\(=x\left(a-c\right)\left(a^2+ac+c^2\right)+y\left(b-c\right)\left(b^2+bc+c^2\right)\)

\(=\left(c-b\right)\left(a-c\right)\left(a^2+ac+c^2\right)-\left(a-c\right)\left(c-b\right)\left(b^2+bc+c^2\right)\)

\(=\left(a-c\right)\left(c-b\right)\left(a^2+ac-b^2-bc\right)\)

\(=\left(a-b\right)\left(a-c\right)\left(c-b\right)\left(a+b+c\right)\)

21 tháng 7 2019

b) tương tự cũng phải đặt:v

x - y = a; y - z = b thì: z - x = -(a+b)

\(xya+yzb-zx\left(a+b\right)=xya-xza+yzb-xzb\)

\(=xa\left(y-z\right)+zb\left(y-x\right)\)

\(=x\left(x-y\right)\left(y-z\right)-z\left(y-z\right)\left(x-y\right)\)

\(=\left(x-y\right)\left(y-z\right)\left(x-z\right)\)

2 tháng 10 2017

có ai trả lời không?

8 tháng 12 2016

Gọi Ư CLN của tử và mẫu là d => 3n+1 chia hết cho d, 5n+2 chia hết cho d . Sau đó nhân 3n+1 với 5 và 5n+2 với 3, rồi lấy mẫu trừ tử

=> 15n+6-(15n+5) chia hết cho d => 1 chia hết cho d => d=1=> (3n+1;5n+2)=1(ĐFCM)

8 tháng 12 2016

Bài 2: 

x=y+1 =>x-y=1

Ta có : 

(x-y)(x+y)(x2+y2)(x4+y4)= (x2-y2)(x2+y2)(x4+y4)

=(x4-y4)(x4+y4)=x8-y8 (ĐFCM)