K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 5 2019

Áp dụng BĐT Cauchy=Schwarz ta có:

\(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}\Rightarrow x+y+z\le\sqrt{3}\)

Ta lại có:\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\forall x,y,z\)

\(\Leftrightarrow2\left(x^2+y^2+z^2\right)-2\left(xy+yz+zx\right)\ge0\)

\(\Leftrightarrow x^2+y^2+z^2\ge xy+yz+zx\)

\(\Rightarrow A\le\sqrt{3}+1\)

Dấu '=' xảy ra khi \(x=y=z=\frac{1}{\sqrt{3}}\)

29 tháng 5 2019

Em làm lại,cách này mà còn sai nữa thì em xin hàng ạ! Dù sao đi nữa cũng xin mọi người chịu khó góp ý giúp em để em càng ngày càng tiến bộ hơn nữa ạ! Thanks all !

*Tìm min

Đặt p = x + y + z; q = xy + yz + zx thì \(x^2+y^2+z^2=p^2-2q=1\Rightarrow q=\frac{p^2-1}{2}\)

Suy ra \(A=p+q=p+\frac{p^2-1}{2}=\frac{p^2+2p-1}{2}\)

\(=\frac{p^2+2p+1-2}{2}=\frac{\left(p+1\right)^2-2}{2}\ge-\frac{2}{2}=-1\)

Vậy giá trị nhỏ nhất của A là -1.

Dấu "=" xảy ra khi (x;y;z) = (0;0;-1) (chỗ này em không biết giải rõ thế nào nữa :v)

*Tìm max

Ta có BĐT sau: \(xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}\le x^2+y^2+z^2\)

Suy ra \(q\le\frac{p^2}{3}\le p^2-2q=1\) suy ra \(\hept{\begin{cases}q\le p^2-2q=1\\p^2\le3\left(p^2-2q\right)\end{cases}}\Leftrightarrow\hept{\begin{cases}q\le1\\p\le\sqrt{3\left(p^2-2q\right)}=\sqrt{3}\end{cases}}\)

Suy ra \(A=p+q\le\sqrt{3}+1\)

17 tháng 7 2023

\(\left(x+y+z\right)^2=x^2+y^2+z^2+2xy+2yz+2xz=x^2+y^2+z^2+2\left(xy+yz+xz\right)\)

\(\Rightarrow2\left(xy+yz+xz\right)=\left(x+y+z\right)^2+\left(x^2+y^2+z^2\right)\)

\(\Rightarrow2\left(xy+yz+xz\right)=a^2+b\)

\(\Rightarrow xy+yz+xz=\dfrac{a^2+b}{2}\)

\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{c}\Rightarrow\dfrac{xy+yz+xz}{xyz}=\dfrac{1}{c}\)

\(\Rightarrow xyz=c\left(xy+yz+xz\right)\)

\(\Rightarrow xyz=\dfrac{\left(a^2+b\right)c}{2}\)

\(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)

\(\Rightarrow x^3+y^3+z^3=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)+3xyz\)

\(\Rightarrow x^3+y^3+z^3=\left(x+y+z\right)\left(x^2+y^2+z^2-\left(xy+yz+xz\right)\right)+3xyz\)

\(\Rightarrow x^3+y^3+z^3=a\left(b-\dfrac{a^2+b}{2}\right)+3\dfrac{\left(a^2+b\right)c}{2}\)

\(\Rightarrow x^3+y^3+z^3=a\dfrac{\left(b-a^2\right)}{2}+3\dfrac{\left(a^2+b\right)c}{2}\)

26 tháng 11 2017

bn gõ bài trong công thức trực quan ik, khó nhìn lắm, ko làm đc

26 tháng 11 2017

1). x2y2(y-x)+y2z2(z-y)-z2x2(z-x)

2)xyz-(xy+yz+xz)+(x+y+z)-1

3)yz(y+z)+xz(z-x)-xy(x+y)

5)y(x-2z)2+8xyz+x(y-2z)2-2z(x+y)2

6)8x3(y+z)-y3(z+2x)-z3(2x-y)

7) (x2+y2)3+(z2-x2)3-(y2+z2)3

8 tháng 8 2017

a)(x-y)3+(y-z)3+(z-x)3

=3(x-y+y-z+z-x)=3

b)nhân vào là rồi đối trừ là hết luôn ( nhưng là mũ 2 hay nhân 2 v mk là theo nhân 2 nhé]

5 tháng 3 2019

\(P=\frac{xy}{z+1}+\frac{yz}{x+1}+\frac{xz}{y+1}\)

\(P=\frac{xy}{\left(x+z\right)+\left(y+z\right)}+\frac{yz}{\left(x+y\right)+\left(x+z\right)}+\frac{xz}{\left(x+y\right)+\left(y+z\right)}\)

\(P\le\frac{1}{4}\left(\frac{xy}{x+z}+\frac{xy}{y+z}+\frac{yz}{x+y}+\frac{yz}{x+z}+\frac{xz}{x+y}+\frac{xz}{y+z}\right)\)

\(P\le\frac{1}{4}\left(x+y+z\right)=\frac{1}{4}\)

\("="\Leftrightarrow x=y=z=\frac{1}{3}\)