Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình kiếm không thấy, mấy bạn có thể copy ra cho mình được không?
\(x^3+y^3=z\left(3xy-z^2\right)\)
\(\Rightarrow x^3+y^3=3xyz-z^3\)
\(\Rightarrow x^3+y^3+z^3=3xyz\)(1)
Từ (1) bạn biến đổi được: \(\orbr{\begin{cases}x+y+z=0\\x=y=z\end{cases}}\) ( x+y+z=0 ko thỏa mãn đề bài.)
Mà \(x+y+z=3\Rightarrow x=y=z=1\)
Khi đó: \(A=673\left(1^{2020}+1^{2020}+1^{2020}\right)+1\)
\(=673.3+1=2020\)
Vậy \(A=2020.\)Chúc bạn học tốt.
Bạn cứ giải như bình thường thôi. Không việc gì phải đoán mò cả!
\(A=\frac{\left(x-1\right)^2}{x^2-4x+3}=\frac{\left(x-1\right)^2}{\left(x-1\right)\left(x-3\right)}< 1\)
\(\Leftrightarrow\left(x-1\right)^2< \left(x-1\right)\left(x-3\right)\)
\(\Leftrightarrow2\left(x-1\right)< 0\)
\(\Leftrightarrow x< 1\)
Vậy tập nghiệm của bất phương trình là \(S=\left\{x< 3\right\}\)
\(ĐKXĐ:x\ne1;x\ne3\)
để \(A< 1\) thì \(\frac{\left(x-1\right)^2}{x^2-4x+3}< 1\Leftrightarrow\frac{\left(x-1\right)^2}{\left(x-1\right)\left(x-3\right)}-1< 0\)
\(\Leftrightarrow\frac{x-1}{x-3}-\frac{x-3}{x-3}< 0\)
\(\Leftrightarrow\frac{x-1-x+3}{x-3}< 0\)
\(\Leftrightarrow\frac{2}{x-3}< 0\)
\(\Rightarrow x-3< 0\) vì \(2>0\)
\(\Rightarrow x< 3\)
kết hợp với \(ĐKXĐ:x\ne1;x\ne3\) ta có \(\hept{\begin{cases}x< 3\\x\ne1\end{cases}}\) thì \(A< 1\)
Gọi A(x), B(x) lần lượt là thương của f(x) khi chia cho x+1, x+2
Ta có: f(x) =A(x) (x+1) +4 => f(-1)=4
f(x) =B(x) (x+2)+3=> f(-2)=3
Gọi C(x) là thương của f(x) khi chia cho x^2+3x+2 có phần dư là ax+b
f(x)=C(x) (x^2+3x+2)+ax+b => f(-1)=C(x).0-a+b=4 => -a+b=4(1)
f(-2)=-2a+b=3 (2)
Từ (2) và (3) suy ra a=1, b=5 =>phần dư cần tìm x+5
vì đa thức chia bậc 2 nên đa thức dư bậc 1 có dạng ax + b
Ta có: \(x^{2017}+x^{2018}=\left(x^2-1\right)Q\left(x\right)+ax+b\left(\forall x\right)\) ( Q(x) là thương )
\(\Rightarrow x^{2017}+x^{2018}=\left(x-1\right)\left(x+1\right)Q\left(x\right)+ax+b\left(\forall x\right)\)(1)
Thay lần lượt x = 1 và x = -1 vào (1), ta có:
\(\hept{\begin{cases}a+b=2\\-a+b=0\end{cases}\Rightarrow\hept{\begin{cases}a=1\\b=1\end{cases}}}\)
Vậy dư của phép chia trên là \(ax+b=x+1\)
x+y+z=-3 => (x+1)+(y+1)+(z+1)=0
Đặt x+1=a,y+1=b,z+1=c ta có:
a+b+c=0 => a3+b3+c3=3abc (tự cm) hay (x+1)3+(y+1)3+(z+1)3=3(x+1)(y+1)(z+1) (dpdcm)