Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(H=\dfrac{1}{1+xy}+\dfrac{1}{1+yz}+\dfrac{1}{1+xz}\ge\dfrac{\left(1+1+1\right)^2}{3+xy+yz+xz}=\dfrac{9}{3+xy+yz+xz}\)
Mặt khác,theo AM-GM: \(xy+yz+xz\le x^2+y^2+z^2=3\)
\(\Rightarrow\dfrac{9}{3+xy+yz+xz}\ge\dfrac{9}{3+3}=\dfrac{9}{6}=\dfrac{3}{2}\)
Dấu "=" khi: \(x=y=z=1\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}=\dfrac{x+y+z}{a+b+c}=x+y+z\)
\(\dfrac{x^2}{a^2}=\dfrac{y^2}{b^2}=\dfrac{z^2}{c^2}=\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}=x^2+y^2+z^2\)
\(\Leftrightarrow\left(x+y+z\right)^2=x^2+y^2+z^2\)
\(\Leftrightarrow2\left(xy+yz+xz\right)=0\Leftrightarrow xy+yz+xz=0\left(đpcm\right)\)
Áp dụng BĐT :
\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\) ≥ 9
Trong đó : a = xy ; b = yz ; c = xz
⇒ ( xy + yz + xz )\(\left(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{xz}\right)\) ≥ 9 ( * )
Áp dụng BĐT cô - si :
x2 + y2 ≥ 2xy ( x > 0 ; y > 0) ( 1 )
y2 + z2 ≥ 2yz ( y > 0 ; z > 0 ) ( 2)
z2 + x2 ≥ 2xz ( z >0 ; x > 0) ( 3)
Cộng từng vế của ( 1 ; 2 ; 3) ⇒ x2 + y2 + z2 ≥ xy + yz + xz ( **)
Từ ( * ; **)
⇒(x2 + y2 + z2).A ≥ ( xy + yz + xz). A ≥ 9
⇒ 3A ≥ 9
⇒ A ≥ 3
⇒ AMIN = 3 ⇔ x = y = z
Lời giải:
Cách 1:
Áp dụng BĐT S.Vacxo ta có:
\(\frac{1}{xy+1}+\frac{1}{1+yz}+\frac{1}{1+xz}\geq \frac{9}{1+xy+1+yz+1+xz}=\frac{9}{3+xy+yz+xz}(1)\)
Theo BĐT Cauchy ta có bổ đề quen thuộc:
\(xy+yz+xz\leq x^2+y^2+z^2\leq 3(2)\)
Từ \((1);(2)\Rightarrow \frac{1}{xy+1}+\frac{1}{yz+1}+\frac{1}{xz+1}\geq \frac{9}{3+xy+yz+xz}\geq \frac{9}{3+3}=\frac{3}{2}\)
Vậy \(P_{\min}=\frac{3}{2}\Leftrightarrow x=y=z=1\)
Cách 2:
Áp dụng BĐT Cauchy cho các số dương:
\(\frac{1}{xy+1}+\frac{xy+1}{4}\geq 2.\sqrt{\frac{1}{xy+1}.\frac{xy+1}{4}}=1\)
\(\frac{1}{yz+1}+\frac{yz+1}{4}\geq 2.\sqrt{\frac{1}{yz+1}.\frac{yz+1}{4}}=1\)
\(\frac{1}{xz+1}+\frac{xz+1}{4}\geq 2.\sqrt{\frac{1}{xz+1}.\frac{xz+1}{4}}=1\)
Cộng tất cả các BĐT trên theo vế và rút gọn:
\(\Rightarrow \frac{1}{xy+1}+\frac{1}{yz+1}+\frac{1}{xz+1}\geq \frac{9-(xy+yz+xz)}{4}\geq \frac{9-3}{4}=\frac{3}{2}\)
Vậy \(P_{\min}=\frac{3}{2}\)
Ta có:
\(xy+yz+zx=\frac{\left(x+y+z\right)^2-x^2-y^2-z^2}{2}=\frac{7^2-23}{2}=13\)
Ta lại có:
\(xy+z-6=xy+z+1-x-y-z=\left(x-1\right)\left(y-1\right)\)
\(\Rightarrow A=\frac{1}{\left(x-1\right)\left(y-1\right)}+\frac{1}{\left(y-1\right)\left(z-1\right)}+\frac{1}{\left(z-1\right)\left(x-1\right)}\)
\(=\frac{x+y+z-3}{xyz-xy-yz-zx+x+y+z-1}=-1\)