Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2)
Theo hệ quả của bất đẳng thức Cauchy ta có
\(\left(x+y+z\right)^2\ge3\left(xy+yz+xz\right)\)
Do \(x^2+y^2+z^2\le3\)
\(\Rightarrow3\ge3\left(xy+yz+xz\right)\)
\(\Rightarrow1\ge xy+yz+xz\)
\(\Rightarrow4\ge xy+yz+xz+3\)
\(\Rightarrow\dfrac{9}{4}\le\dfrac{9}{3+xy+xz+yz}\) ( 1 )
Ta có \(C=\dfrac{1}{1+xy}+\dfrac{1}{1+yz}+\dfrac{1}{1+xz}\)
Áp dụng bất đẳng thức cộng mẫu số
\(\Rightarrow C=\dfrac{1}{1+xy}+\dfrac{1}{1+yz}+\dfrac{1}{1+xz}\ge\dfrac{9}{3+xy+yz+xz}\) ( 2 )
Từ ( 1 ) và ( 2 )
\(\Rightarrow C=\dfrac{1}{1+xy}+\dfrac{1}{1+yz}+\dfrac{1}{1+xz}\ge\dfrac{9}{4}\)
Vậy \(C_{min}=\dfrac{9}{4}\)
Dấu " = " xảy ra khi \(x=y=z=\sqrt{\dfrac{1}{3}}\)

Ai lm giúp mk vs câu nào cũng được. Ai làm xong sớm nhất sẽ được tick

\(H=\dfrac{1}{1+xy}+\dfrac{1}{1+yz}+\dfrac{1}{1+xz}\ge\dfrac{\left(1+1+1\right)^2}{3+xy+yz+xz}=\dfrac{9}{3+xy+yz+xz}\)
Mặt khác,theo AM-GM: \(xy+yz+xz\le x^2+y^2+z^2=3\)
\(\Rightarrow\dfrac{9}{3+xy+yz+xz}\ge\dfrac{9}{3+3}=\dfrac{9}{6}=\dfrac{3}{2}\)
Dấu "=" khi: \(x=y=z=1\)

b)\(N=\dfrac{yz}{x^2}+\dfrac{zx}{y^2}+\dfrac{xy}{z^2}\)
\(N=\dfrac{xyz}{x^3}+\dfrac{xyz}{y^3}+\dfrac{xyz}{z^3}\)
\(N=xyz\left(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}\right)\)
Ta cm đẳng thức sau:\(x^3+y^3+z^3=3xyz\Leftrightarrow x+y+z=0\)
ĐT\(\Leftrightarrow x^3+y^3-3xyz=-z^3\)
\(\Leftrightarrow\left(x+y\right)\left(x^2-xy+y^2\right)-3xy=-z^3\)
\(\Leftrightarrow-zx^2+xyz-zy^2-3xyz=-z^3\)
\(\Leftrightarrow x^2+2xy+y^2=z^2\)
\(\Leftrightarrow\left(x+y\right)^2=z^2\)
\(\Leftrightarrow\left(-z\right)^2=z^2\)(luôn đúng)
Áp dụng\(\Rightarrow N=xyz.\dfrac{3}{xyz}=3\)
a, (M-1)/70-71=m
m=(71^9+71^8....71+1)
71m=71^10+...71^2+71
70m=71^10-1
(M-1)/70=71^10+70
M-1=70(71^10+70)
M=70(71^10+70)-1
Lời giải:
Cách 1:
Áp dụng BĐT S.Vacxo ta có:
\(\frac{1}{xy+1}+\frac{1}{1+yz}+\frac{1}{1+xz}\geq \frac{9}{1+xy+1+yz+1+xz}=\frac{9}{3+xy+yz+xz}(1)\)
Theo BĐT Cauchy ta có bổ đề quen thuộc:
\(xy+yz+xz\leq x^2+y^2+z^2\leq 3(2)\)
Từ \((1);(2)\Rightarrow \frac{1}{xy+1}+\frac{1}{yz+1}+\frac{1}{xz+1}\geq \frac{9}{3+xy+yz+xz}\geq \frac{9}{3+3}=\frac{3}{2}\)
Vậy \(P_{\min}=\frac{3}{2}\Leftrightarrow x=y=z=1\)
Cách 2:
Áp dụng BĐT Cauchy cho các số dương:
\(\frac{1}{xy+1}+\frac{xy+1}{4}\geq 2.\sqrt{\frac{1}{xy+1}.\frac{xy+1}{4}}=1\)
\(\frac{1}{yz+1}+\frac{yz+1}{4}\geq 2.\sqrt{\frac{1}{yz+1}.\frac{yz+1}{4}}=1\)
\(\frac{1}{xz+1}+\frac{xz+1}{4}\geq 2.\sqrt{\frac{1}{xz+1}.\frac{xz+1}{4}}=1\)
Cộng tất cả các BĐT trên theo vế và rút gọn:
\(\Rightarrow \frac{1}{xy+1}+\frac{1}{yz+1}+\frac{1}{xz+1}\geq \frac{9-(xy+yz+xz)}{4}\geq \frac{9-3}{4}=\frac{3}{2}\)
Vậy \(P_{\min}=\frac{3}{2}\)