\(A=\frac{x}{\sqrt{y+z-4}}+\frac{y}{\sqrt{z+x-4}}+\frac{z}{\sqrt{x+y...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 2 2018

\(\frac{x}{\sqrt{y+z-4}}\)=\(=\frac{2x}{\sqrt{4\left(y+z-4\right)}}\ge\frac{2x}{\frac{y+z-4+4}{2}}=\frac{4x}{y+z}\)

vt \(\ge4\left(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\right)=4\left(\frac{x^2}{xy+xz}+\frac{y^2}{xy+xz}+\frac{z^2}{xz+yz}\right)\ge4.\frac{\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)}=\frac{2.\left(x+y+z\right)^2}{xy+yz+xz}\)

\(\ge\frac{2\left(x+y+z\right)^2}{\frac{\left(x+y+z\right)^2}{3}}=6\)

dau = xay ra khi x=y=z=4

17 tháng 8 2018

ê, mình nhầm nha, x, y, z>0


 

17 tháng 8 2018

Áp dụng BĐT AM-GM và BĐT Nesbitt ta có :

\(P=\frac{2x}{\sqrt{4\left(y+z-4\right)}}+\frac{2y}{\sqrt{4\left(x+z-4\right)}}+\frac{2z}{\sqrt{4\left(x+y-4\right)}}\)

\(\ge\frac{2x}{\frac{4+y+z-4}{2}}+\frac{2y}{\frac{4+x+z-4}{2}}+\frac{2z}{\frac{4+x+y-4}{2}}\)

\(=4\left(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\right)\ge\frac{3}{2}\cdot4=6\)

Dấu "=" xảy ra khi \(x=y=z=4\)

1 tháng 8 2017

2. Xem tại đây

1.  \(P=\frac{1}{\sqrt{x.1}}+\frac{1}{\sqrt{y.1}}+\frac{1}{\sqrt{z.1}}\)

\(\ge\frac{1}{\frac{x+1}{2}}+\frac{1}{\frac{y+1}{2}}+\frac{1}{\frac{z+1}{2}}\)

\(=\frac{2}{x+1}+\frac{2}{y+1}+\frac{2}{z+1}\ge\frac{2.\left(1+1+1\right)^2}{x+y+z+3}=\frac{18}{3+3}=3\)

Đẳng thức xảy ra  \(\Leftrightarrow x=y=z=1\)

1 tháng 8 2017

1 ) có cách theo cosi đó 

áp dụng cosi cho 3 số dương ta có \(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{x}}+x\ge3\sqrt[3]{\frac{1}{\sqrt{x}}\times\frac{1}{\sqrt{x}}\times x}=3\sqrt[3]{1}=3\)(1)

\(\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{y}}+y\ge3\)(2)

\(\frac{1}{\sqrt{z}}+\frac{1}{\sqrt{z}}+z\ge3\)(3)

cộng các vế của (1),(2),(3), đc \(2\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\right)+\left(x+y+z\right)\ge9\Rightarrow2P+3\ge9\Rightarrow P\ge3\)

minP=3 khi x=y=z=1

15 tháng 9 2018

đúng đề k :v

15 tháng 9 2018

đúng mà, sao thế :))

26 tháng 8 2019

3, \(P=a+b+\frac{1}{2a}+\frac{2}{b}\)

=\(\left(\frac{1}{2a}+\frac{a}{2}\right)+\left(\frac{b}{2}+\frac{2}{b}\right)+\frac{a+b}{2}\)

AD bđt cosi vs hai số dương có:

\(\frac{1}{2a}+\frac{a}{2}\ge2\sqrt{\frac{1}{2a}.\frac{a}{2}}=2\sqrt{\frac{1}{4}}=1\)

\(\frac{b}{2}+\frac{2}{b}\ge2\sqrt{\frac{b}{2}.\frac{2}{b}}=2\)

\(\frac{a+b}{2}\ge\frac{3}{2}\) (vì a+b \(\ge3\))

=> \(P=\left(\frac{1}{2a}+\frac{a}{2}\right)+\left(\frac{b}{2}+\frac{2}{b}\right)+\frac{a+b}{2}\ge1+2+\frac{3}{2}\)

<=> P \(\ge4.5\)

Dấu "=" xảy ra <=>\(\left\{{}\begin{matrix}\frac{1}{2a}=\frac{a}{2}\\\frac{b}{2}=\frac{2}{b}\\a+b=3\end{matrix}\right.\) <=>\(\left\{{}\begin{matrix}a^2=1\\b^2=4\\a+b=3\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}a=1\\b=2\\a+b=3\end{matrix}\right.\)

=> a=2,b=3

Vậy minP=4.5 <=>a=1,b=2

7 tháng 2 2018

Đặt \(\sqrt{x^2+y^2}=c;\sqrt{y^2+z^2}=a;\sqrt{z^2+x^2}=b\)

Ta có:

\(A=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\)

\(\ge\frac{x^2}{\sqrt{2\left(y^2+z^2\right)}}+\frac{y^2}{\sqrt{2\left(z^2+x^2\right)}}+\frac{z^2}{\sqrt{2\left(x^2+y^2\right)}}\)

\(=\frac{1}{2\sqrt{2}}\left(\frac{c^2+b^2-a^2}{a}+\frac{a^2+c^2-b^2}{b}+\frac{b^2+a^2-c^2}{c}\right)\)

\(\ge\frac{1}{2\sqrt{2}}\left(\frac{\left(2a+2b+2c\right)^2}{2\left(a+b+c\right)}-2018\right)=\frac{1009}{\sqrt{2}}\)

18 tháng 5 2019

áp dụng bất đẳng thức Cauchy ngược dấu cho 2 số không âm ta có

\(\sqrt{\left(x-1\right).1}\le\frac{x-1+1}{2}=\frac{x}{2}\Rightarrow\frac{x}{\sqrt{x-1}}\ge2.\)

\(\sqrt{\left(\frac{y}{\sqrt{2}}-\sqrt{2}\right).\sqrt{2}}\le\frac{\frac{y}{\sqrt{2}}-\sqrt{2}+\sqrt{2}}{2}=\frac{y}{2\sqrt{2}}\Rightarrow\frac{y}{\sqrt{y-2}}\ge2\sqrt{2}.\)

\(\sqrt{\left(\frac{z}{\sqrt{3}}-\sqrt{3}\right).\sqrt{3}}\le\frac{\frac{z}{\sqrt{3}}-\sqrt{3}+\sqrt{3}}{2}=\frac{z}{2\sqrt{3}}\Rightarrow\frac{z}{\sqrt{z-3}}\ge2\sqrt{3}\)

\(\Rightarrow A\ge2+2\sqrt{2}+2\sqrt{3}\)

Vậy Min \(A=2+2\sqrt{2}+2\sqrt{3}\)

\(\Leftrightarrow\hept{\begin{cases}x-1=1\\\frac{y}{\sqrt{2}}-\sqrt{2}=\sqrt{2}\\\frac{z}{\sqrt{3}}-\sqrt{3}=\sqrt{3}\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2\\y=4\\z=6\end{cases}\left(tmđk\right)}\)

30 tháng 5 2017

\(M^2=\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}+\frac{2xy}{\sqrt{yz}}+\frac{2yz}{\sqrt{zx}}+\frac{2xz}{\sqrt{yz}}=\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}+\frac{2x\sqrt{y}}{\sqrt{z}}+\frac{2y\sqrt{z}}{\sqrt{x}}+\frac{2z\sqrt{x}}{\sqrt{y}}\)

Áp dụng bđt Cô-si: \(\frac{x^2}{y}+\frac{x\sqrt{y}}{\sqrt{z}}+\frac{x\sqrt{y}}{\sqrt{z}}+z\ge4\sqrt[4]{\frac{x^2}{y}.\frac{x\sqrt{y}}{\sqrt{z}}.\frac{x\sqrt{y}}{\sqrt{z}}.z}=4x\)

tương tự \(\frac{y^2}{z}+\frac{y\sqrt{z}}{\sqrt{x}}+\frac{y\sqrt{z}}{\sqrt{x}}+x\ge4y\);\(\frac{z^2}{x}+\frac{z\sqrt{x}}{\sqrt{y}}+\frac{z\sqrt{x}}{\sqrt{y}}+y\ge4z\)

=>\(M^2+x+y+z\ge4\left(x+y+z\right)\Rightarrow M^2\ge3\left(x+y+z\right)\ge3.12=36\Rightarrow M\ge6\)

Dấu "=" xảy ra khi x=y=z=4

Vậy minM=6 khi x=y=z=4

30 tháng 5 2017

b1: Áp dụng bđt Cauchy Schwarz dạng Engel ta được:

\(P=\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\ge\frac{\left(x+y+z\right)^2}{y+z+x+z+y+y}=\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}=\frac{2}{2}=1\)

=>minP=1 <=> x=y=z=2/3

8 tháng 9 2018

TA CÓ:

\(P=\frac{4x}{4\sqrt{y+z-4}}+\frac{4y}{4\sqrt{z+x-4}}+\frac{4z}{4\sqrt{x+z-4}}\)

ÁP DỤNG HẰNG ĐẲNG THỨC:

a2+4\(\ge\)4a

\(\Rightarrow P\ge\frac{4x}{y+z-4+4}+\frac{4y}{z+x-4+4}+\frac{4z}{4+z+x-4}=4\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\right)\ge6\)

DẤU BẰNG XẢY RA KHI VÀ CHỈ KHI x=y=z=4

8 tháng 9 2018

NẾU AI CHƯA HIỂU ĐOẠN 

\(4\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\right)\ge6\)

THÌ LÀM THẾ NÀY NHÉ:
TA CÓ:

\(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=\frac{x^2}{x\left(y+z\right)}+\frac{y^2}{y\left(z+x\right)}+\frac{z^2}{z\left(x+y\right)}\ge\frac{\left(x+y+z\right)^2}{2\left(xy+yz+zx\right)}\ge\frac{\left(x+y+z\right)^2}{2.\frac{\left(x+y+z\right)^2}{3}}=\frac{1}{\frac{2}{3}}=\frac{3}{2}\)\(\Rightarrow4\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\right)\ge\frac{4.3}{2}=6\)