Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\frac{\sqrt{x}}{\sqrt{xy}+\sqrt{x}+1}+\frac{\sqrt{y}}{\sqrt{yz}+\sqrt{y}+1}+\frac{\sqrt{z}}{\sqrt{xz}+\sqrt{z}+1}\)( Vì xyz=1 nên \(\sqrt{xyz}=1\))
\(P=\frac{\sqrt{x}}{\sqrt{x}\left(\sqrt{y}+1+\sqrt{yz}\right)}+\frac{\sqrt{y}}{\sqrt{yz}+\sqrt{y}+1}+\frac{\sqrt{z}}{\sqrt{z}\left(\sqrt{x}+1+\sqrt{xy}\right)}\)
\(P=\frac{\sqrt{y}+1}{\sqrt{y}+1+\sqrt{yz}}+\frac{1}{\sqrt{x}+1+\sqrt{xy}}\)
\(P=\frac{\sqrt{y}+1}{\sqrt{y}+1+\sqrt{yz}}+\frac{\sqrt{xyz}}{\sqrt{x}\left(1+\sqrt{yz}+\sqrt{y}\right)}\)
\(P=\frac{\sqrt{y}+1}{\sqrt{y}+1+\sqrt{yz}}+\frac{\sqrt{yz}}{\sqrt{y}+1+\sqrt{yz}}=\frac{\sqrt{y}+1+\sqrt{yz}}{\sqrt{y}+1+\sqrt{yz}}=1\)
Ta có : \(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\ge xy\left(x+y\right)\)
\(\Rightarrow1+x^3+y^3\ge xyz+xy\left(x+y\right)=xy\left(x+y+z\right)\ge3xy\sqrt[3]{xyz}=3xy\)
\(\frac{\sqrt{1+x^3+y^3}}{xy}\ge\frac{\sqrt{3xy}}{xy}=\sqrt{\frac{3}{xy}}\)
Tương tự : \(\frac{\sqrt{1+y^3+z^3}}{yz}\ge\frac{\sqrt{3yz}}{yz}=\sqrt{\frac{3}{yz}}\); \(\frac{\sqrt{1+x^3+z^3}}{xz}\ge\frac{\sqrt{3xz}}{xz}=\sqrt{\frac{3}{xz}}\)
\(\Rightarrow A\ge\sqrt{3}\left(\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{xz}}\right)\ge3\sqrt{3}\sqrt{\frac{1}{\sqrt{x^2y^2z^2}}}=3\sqrt{3}\)
Đề Sai sửa lại nha \(A=\frac{\sqrt{x}}{\sqrt{xy}+\sqrt{x}+10}+\frac{\sqrt{y}}{\sqrt{yz}+\sqrt{y}+1}+\frac{10.\sqrt{z}}{\sqrt{xz}+10\sqrt{x}+10}\)
\(B=\frac{\sqrt{x}}{\sqrt{xy}+\sqrt{x}+10}\)
\(C=\frac{\sqrt{y}}{\sqrt{yz}+\sqrt{y}+1}\)
\(D=\frac{10.\sqrt{z}}{\sqrt{xz}+10\sqrt{x}+10}\)
\(\Rightarrow C=\frac{\sqrt{x}.\sqrt{y}}{\sqrt{x}.\left(\sqrt{yz}+\sqrt{y}+1\right)}=\frac{\sqrt{xy}}{\sqrt{yzx}+\sqrt{yx}+\sqrt{x}}=\frac{\sqrt{xy}}{10+\sqrt{yx}+\sqrt{x}}\)
(do xyz=100 nên căn xyz=10)
\(\Rightarrow D=\frac{\left(\frac{10.\sqrt{z}}{\sqrt{z}}\right)}{\left(\frac{\sqrt{xz}+10\sqrt{x}+10}{\sqrt{z}}\right)}=\frac{10}{\sqrt{x}+10+\frac{\sqrt{xyz}}{\sqrt{z}}}=\frac{10}{\sqrt{x}+10+\sqrt{xy}}\)(10= căn xyz do xyz=100)
\(\Leftrightarrow A=B+C+D=\frac{\sqrt{x}}{\sqrt{xy}+\sqrt{x}+10}+\frac{\sqrt{xy}}{10+\sqrt{yx}+\sqrt{x}}+\frac{10}{\sqrt{x}+10+\sqrt{xy}}\)
\(=\frac{\sqrt{xy}+\sqrt{x}+10}{\sqrt{xy}+\sqrt{x}+10}=1\)
T i c k cho mình nha cảm ơn
Ta có x.y.z=100
Suy ra \(\sqrt{xyz}=10\)
Thay \(10=\sqrt{xyz}\) vào A ta được
\(A=\frac{\sqrt{x}}{\sqrt{xy}+\sqrt{x}+\sqrt{xyz}}+\frac{\sqrt{y}}{\sqrt{yz}+\sqrt{y}+1}+\frac{\sqrt{z}}{\sqrt{xz}+\sqrt{xyz}\sqrt{z}+\sqrt{xyz}}\)
\(A=\frac{\sqrt{x}}{\sqrt{x}\left(\sqrt{y}+1+\sqrt{yz}\right)}+\frac{\sqrt{y}}{\sqrt{yz}+\sqrt{y}+1}+\frac{\sqrt{z}}{\sqrt{zx}\left(1+\sqrt{yz}+\sqrt{y}\right)}\)
\(A=\frac{1}{\sqrt{yz}+\sqrt{y}+1}+\frac{\sqrt{y}}{\sqrt{yz}+\sqrt{y}+1}+\frac{\sqrt{yz}}{10\left(\sqrt{yz}+\sqrt{y}+1\right)}\)
Mình giải tới đây bí mất rồi ai biết thì làm tiếp rồi chỉ bạn đó nhé
1.
Xét riêng 2 căn lớn đầu tiên
Bình phương, thu gọn được căn(12-8 căn 2)
Giờ kết hợp kết quả này với căn lớn còn lại
Tiếp tục bình phương, thu gọn là xong
Ta có: \(x^3+y^3\ge xy\left(x+y\right)\Rightarrow1+x^3+y^3\ge xyz+xy\left(x+y\right)\)
\(=xy\left(x+y+z\right)\ge3xy\sqrt[3]{xyz}=3xy\)(vì xyz = 1)
\(\Rightarrow\frac{\sqrt{1+x^3+y^3}}{xy}=\frac{\sqrt{3xy}}{xy}=\sqrt{\frac{3}{xy}}\)
Tương tự ta có: \(\frac{\sqrt{1+y^3+z^3}}{yz}=\sqrt{\frac{3}{yz}}\);\(\frac{\sqrt{1+z^3+x^3}}{zx}=\sqrt{\frac{3}{zx}}\)
Cộng vế với vế, ta được:
\(BĐT=\sqrt{3}\left(\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{zx}}\right)\)
\(\ge3\sqrt{3}\sqrt[3]{\frac{1}{\sqrt{x^2y^2z^2}}}=3\sqrt{3}\)
(Dấu "="\(\Leftrightarrow x=y=z=1\))
Đặt \(\hept{\begin{cases}\sqrt{x}=p\\\sqrt{y}=q\\\sqrt{z}=r\end{cases}}\). Khi đó \(\hept{\begin{cases}p+q+r=1\\p,q,r>0\end{cases}}\)
và ta cần chứng minh \(\frac{pq}{\sqrt{p^2+q^2+2r^2}}+\frac{qr}{\sqrt{q^2+r^2+2p^2}}+\frac{rp}{\sqrt{r^2+p^2+2q^2}}\le\frac{1}{2}\)
Ta có: \(\frac{pq}{\sqrt{p^2+q^2+2r^2}}=\frac{2pq}{\sqrt{\left(1+1+2\right)\left(p^2+q^2+2r^2\right)}}\)
\(\le\frac{2pq}{p+q+2r}\le\frac{1}{2}\left(\frac{pq}{p+r}+\frac{pq}{q+r}\right)\)(Theo BĐT Cauchy-Schwarz và BĐT \(\frac{1}{u}+\frac{1}{v}\ge\frac{4}{u+v}\)) (1)
Hoàn toàn tương tự: \(\frac{qr}{\sqrt{q^2+r^2+2p^2}}\le\frac{1}{2}\left(\frac{qr}{q+p}+\frac{qr}{r+p}\right)\)(2); \(\frac{rp}{\sqrt{r^2+p^2+2q^2}}\le\frac{1}{2}\left(\frac{rp}{r+q}+\frac{rp}{p+q}\right)\)(3)
Cộng theo vế của 3 BĐT (1), (2), (3), ta được: \(\frac{pq}{\sqrt{p^2+q^2+2r^2}}+\frac{qr}{\sqrt{q^2+r^2+2p^2}}+\frac{rp}{\sqrt{r^2+p^2+2q^2}}\)\(\le\frac{1}{2}\left(\frac{r\left(p+q\right)}{p+q}+\frac{p\left(q+r\right)}{q+r}+\frac{q\left(r+p\right)}{r+p}\right)=\frac{1}{2}\left(p+q+r\right)=\frac{1}{2}\)(Do p + q + r = 1)
Đẳng thức xảy ra khi \(p=q=r=\frac{1}{3}\)hay \(x=y=z=\frac{1}{9}\)