K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2016

huhu.hết lượt gửi tin rồi mai gửi đi.

bài này trong nâng có phát triển à.mở giải mà xem.

20 tháng 11 2016
có gmai:thuvuhahotline76@gmail.com
3 tháng 9 2017

b) A = -1 nha bạn.

3 tháng 9 2017

à quên, A = 1

23 tháng 1 2017

1,10x2+29xy+21y2=2001

=>10x2+15xy+14xy+21y2=2001

=>5x(2x+3y)+7y(2x+3y)=2001

=>(5x+7y)(2x+3y)=2001=1.2001=2001.1=3.667=667.3=......(còn nghiệm âm nữa) 

tới đây thì phải giải HPT thôi(dài) ,tạm thời mình chưa nghĩ ra cách nào ngắn hơn 

11 tháng 3 2016

xét hiệu:

\(\left(a^{2000}+b^{2000}\right)\left(a^{2002}+b^{2002}\right)-\left(a^{2001}+a^{2001}\right)^2=0\)

11 tháng 3 2016

(a^2001 + b^2001).(a+ b) - (a2000 + b2000).ab = a^2002 + b^2002

(a+ b) – ab = 1

(a – 1).(b – 1) = 0

a = 1 hoặc b = 1

Với a = 1 suy ra; b^2000 = b^2001 suy ra; b = 1 hoặc b = 0 (loại)

Với b = 1suy ra; a2000 = a2001 suy ra; a = 1 hoặc a = 0 (loại)

Vậy a = 1; b = 1 suy ra a2011 + b2011 = 2

17 tháng 5 2016

a2000+b2000=a2001+b2001=a2002+b2002 <=> a=b=1

Vay a2011+b2011=2

26 tháng 2 2017

Áp dụng BĐT Cauchy-Schwartz:

\((a^{2000}+b^{2000})(a^{2002}+b^{2002})\ge(a^{2001}+b^{2001})^{2}\)

Đẳng thức xảy ra khi \(\dfrac{a^{2000}}{a^{2001}}=\dfrac{b^{2000}}{b^{2001}}\Leftrightarrow \dfrac{1}{a}=\dfrac{1}{b}\Leftrightarrow a=b\)\((a,b>0)\)

Từ giả thiết, suy ra đc a=b => \(a^{2000}=a^{2001}\Rightarrow a=b=1(a>0)\)

Từ đó suy ra \(a^{2017}+b^{2017}=2\)

7 tháng 4 2015

 (a2001 + b2001).(a+ b) - (a2000 + b2000).ab = a2002 + b2002
(a+ b) – ab = 1
(a – 1).(b – 1) = 0
a = 1 hoặc b = 1
Với a = 1 => b2000 = b2001 => b = 1 hoặc b = 0 (loại)
Với b = 1 => a2000 = a2001 => a = 1 hoặc a = 0 (loại)
Vậy a = 1; b = 1 => a2011 + b2011 = 2

9 tháng 4 2015

 (a2001 + b2001).(a+ b) - (a2000 + b2000).ab = a2002 + b2002
(a+ b) – ab = 1
(a – 1).(b – 1) = 0
a = 1 hoặc b = 1
Với a = 1 => b2000 = b2001 => b = 1 hoặc b = 0 (loại)
Với b = 1 => a2000 = a2001 => a = 1 hoặc a = 0 (loại)
Vậy a = 1; b = 1 => a2011 + b2011 = 2

11 tháng 12 2015

a2000 + b2000 = a2001 + b2001
=>a2000(a-1)+b2000(b-1)=0 (1)
tương tự: a2001(a-1)+b2001(b-1)=0 (2)
trừ (2) cho (1) ta được kết quả sau khi nhóm lại là:
a2000(a-1)2+b2000(b-1)2=0
mỗi số hạng ≥0 =>mỗi cái=0
tìm được a=0 or a=1 và b=0 or b=1
vì a,b dương nên nghiệm của pt là: (a;b)∈{(1;1)}
=>a2011 + b2011=2 

Vậy ...