K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2021

giúp e với ; plz 

NV
11 tháng 7 2021

Bài này ko biết làm theo kiểu toán sơ cấp, nhìn điều kiện \(x^2-y^2=4\) thì khá dễ đến việc hyperbolic hóa biến số, qua đó dễ dàng tìm được min của P là \(2\sqrt{5}-6\) . Nhưng sử dụng toán sơ cấp thì đúng là chưa nghĩ ra.

Cách hyperbolic hóa:

\(P=3x^2\left(x^2-4\right)+xy^3+xy\left(y^2+4\right)=3\left(xy\right)^2+xy^3+x^3y=3\left(xy\right)^2+xy\left(x^2+y^2\right)\)

Nếu x;y cùng dấu thì P>0, xét trong trường hợp x;y trái dấu. Không mất tính tổng quát, giả sử \(x>0\) 

Từ giả thiết: \(x^2-y^2=4\Rightarrow\left(\dfrac{x}{2}\right)^2-\left(\dfrac{y}{2}\right)^2=1\) \(\Rightarrow\dfrac{x}{2}\ge1\)

Đặt \(\left\{{}\begin{matrix}\dfrac{x}{2}=cosh\left(u\right)\\\dfrac{y}{2}=sinh\left(u\right)\end{matrix}\right.\)

\(P=3\left(4sinh\left(u\right).cosh\left(u\right)\right)^2+4sinh\left(u\right).cosh\left(u\right)\left[4sinh^2u+4cosh^2u\right]\)

\(=12sinh^2\left(2u\right)+8sinh\left(2u\right).cosh\left(2u\right)\)

\(=6\left[cosh\left(4u\right)-1\right]+4sinh\left(4u\right)\)

\(=6cosh\left(4u\right)+4sinh\left(4u\right)-6\)

\(=2\sqrt{5}\left(\dfrac{3}{\sqrt{5}}cosh\left(4u\right)+\dfrac{2}{\sqrt{5}}sinh\left(4u\right)\right)-6\)

\(=2\sqrt{5}cosh\left(4u+\alpha\right)-6\ge2\sqrt{5}-6\)

(Trong đó  \(\dfrac{3}{\sqrt{5}}=cosh\left(\alpha\right)\) ; \(\dfrac{2}{\sqrt{5}}=sinh\left(\alpha\right)\))

Nhìn điểm rơi \(4u+\alpha=0\) với \(\alpha=arccosh\left(\dfrac{3}{\sqrt{5}}\right)=ln\left(\sqrt{5}\right)\) xuất hiện logarit tự nhiên thì mình không nghĩ bằng 1 pp sơ cấp nào đó có thể giải quyết được bài này.

A=x3+y3=(x+y)(x2-xy+y2)

=(x+y)2\(\ge\)0

Dấu "=" xảy ra khi x=-y

16 tháng 1 2018

Ta có:\(3x^2-4xy+3y^2=25\)

\(\Leftrightarrow2x^2-4xy+2y^2+x^2+y^2=25\)

\(\Leftrightarrow2\left(x-y\right)^2+x^2+y^2=25\Leftrightarrow x^2+y^2=25-2\left(x-y\right)^2\le25\)

\(\Rightarrow\)GTLN của P là 25 đạt được khi x=y\(\Rightarrow3x^2-4x^2+3x^2=25\Rightarrow2x^2=25\Rightarrow x=\frac{5}{\sqrt{2}}=y\)

Lại có:\(3x^2-4xy+3y^2=25\Leftrightarrow3\left(x^2+y^2\right)=25+4xy\)

\(\Leftrightarrow3\left(x^2+y^2\right)+2\left(x^2+y^2\right)=25+2x^2+4xy+2y^2\)

\(\Leftrightarrow5\left(x^2+y^2\right)=25+2\left(x+y\right)^2\ge25\)

\(\Rightarrow x^2+y^2\ge5\)

\(\Rightarrow\)GTNN của P là 5 đạt được khi \(x=-y\Rightarrow3x^2+4x^2+3x^2=25\Rightarrow10x^2=25\Rightarrow x^2=\frac{5}{2}\Rightarrow x=\sqrt{\frac{5}{2}}\)

 \(\Rightarrow y=-\sqrt{\frac{5}{2}}\)

        

19 tháng 3 2017

Bạn có thể kiểm tra lại đề bài chỗ \(y^3-y-2\) được không ?!

19 tháng 3 2017

à nhầm đề: y^2-y-2 nhé