Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
https://olm.vn/hoi-dap/detail/227981379332.html
Bạn tham khảo ở đây nhé.
Đặt \(\left(x,y,z\right)\rightarrow\left(a,b,c\right)\) (chẳng có lý do j đâu mình gõ a,b,c quen hơn thôi)
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(3P=\frac{3\sqrt{ab}}{c+3\sqrt{bc}}+\frac{3\sqrt{bc}}{a+3\sqrt{bc}}+\frac{3\sqrt{ca}}{b+3\sqrt{ca}}\)
\(=3-\left(\frac{a}{a+3\sqrt{bc}}+\frac{b}{b+3\sqrt{ca}}+\frac{c}{c+3\sqrt{ab}}\right)\)
\(\le3-\left[\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+3\sqrt{abc}\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)}\right]\)
\(\le3-\left[\frac{\left(a+b+c\right)^2}{\left(a^2+b^2+c^2\right)+3\left(ab+bc+ca\right)}\right]\)
\(\le3-\left[\frac{\left(a+b+c\right)^2}{\left(a^2+b^2+c^2\right)+\frac{\left(a+b+c\right)^2}{3}}\right]=3-\frac{9}{4}=\frac{3}{4}\)
Xảy ra khi \(a=b=c\)
Áp dụng BĐT cosi:
`(y-1)+1>=2\sqrt{y-1}`
`=>\sqrt{y-1}<=y/2`
`=>x\sqrt{y-1}<=(xy)/2`
Hoàn toàn tương tự:
`\sqrt{x-1}<=x/2`
`=>y\sqrt{x-1}<=(xy)/2`
`=>x\sqrt{y-1}+y\sqrt{x-1}<=xy`
Dấu "=" xảy ra khi `x=y=2`
Thắng nên hạn chế dùng kiến thức lớp trên để giải bài lớp dưới vì thầy giáo sẽ không chấp nhận cách giải đo.
Từ bước \(P=\frac{t^2-t-3}{t^2+t+1}\) mình đề xuất sử dụng tam thức để giải
\(\Rightarrow t^2\left(P-1\right)+t\left(P+1\right)+P+3=0\)
Để PT có nghiệm thì
\(\Delta=\left(P+1\right)^2-4\left(P-1\right)\left(P+3\right)\ge0\)
\(\Leftrightarrow-3P^2-6P+13\ge0\)
\(\Leftrightarrow\frac{-4\sqrt{3}-3}{3}\le P\le\frac{4\sqrt{3}-3}{3}\)
*)Với \(y=0\) ta dễ thấy ĐPCM
*)Với \(y=0\) thì:
Đặt \(P=\frac{x^2-xy-3y^2}{x^2+xy+y^2}=\frac{\left(\frac{x}{y}\right)^2-\frac{x}{y}-3}{\left(\frac{x}{y}\right)^2+\frac{x}{y}+1}\)
Đặt \(t=\frac{x}{y}\) thì \(P=\frac{t^2-t-3}{t^2+t+1}\).Xét \(f\left(t\right)=\frac{t^2-t-3}{t^2+t+1}\)
\(f'\left(t\right)=\frac{2\left(t^2+4y+1\right)}{\left(t^2+t+1\right)^2};f'\left(t\right)=0\Leftrightarrow\orbr{\begin{cases}t=-2-\sqrt{3}\\t=-2+\sqrt{3}\end{cases}}\)
Dựa vào bảng biến thiên: Max\(f\left(t\right)=f\left(-2-\sqrt{3}\right)=\frac{4\sqrt{3}-3}{3}\)
Min\(f\left(t\right)=f\left(-2+\sqrt{3}\right)=\frac{-4\sqrt{3}-3}{3}\)
Suy ra \(\frac{-4\sqrt{3}-3}{3}\le P\le\frac{4\sqrt{3}-3}{3}\)
\(\frac{-4\sqrt{3}-3}{3}\le\frac{x^2-xy-3y^2}{x^2+xy+y^2}\le\frac{4\sqrt{3}-3}{3}\)
Lại có: \(x^2+xy+y^2\le3\) nên \(-4\sqrt{3}-3\le x^2-xy-3y^2\le4\sqrt{3}-3\)
Đề bài sai, sửa đề: \(2\le\sqrt{x^2+y^2}+\sqrt{xy}\le\sqrt{6}\)
Đặt \(P=\sqrt{x^2+y^2}+\sqrt{xy}>0\)
\(\Rightarrow P^2=x^2+y^2+xy+2\sqrt{\left(x^2+y^2\right)xy}\ge x^2+y^2+xy+2\sqrt{2xy.xy}\)
\(\Rightarrow P^2\ge x^2+y^2+\left(2\sqrt{2}+1\right)xy\ge x^2+y^2+2xy=4\)
\(\Rightarrow P\ge2\)
Dấu "=" xảy ra khi \(\left(x;y\right)=\left(2;0\right);\left(0;2\right)\)
Lại có: \(P^2=x^2+y^2+xy+2\sqrt{\left(x^2+y^2\right)xy}=x^2+y^2+xy+\sqrt{4xy.\left(x^2+y^2\right)}\)
\(\Rightarrow P^2\le x^2+y^2+xy+\dfrac{1}{2}\left(4xy+x^2+y^2\right)=\dfrac{3}{2}\left(x+y\right)^2=6\)
\(\Rightarrow P\le\sqrt{6}\)
Dấu "=" xảy ra khi \(\left(x;y\right)=\left(\dfrac{3-\sqrt{3}}{3};\dfrac{3+\sqrt{3}}{3}\right)\)
x=1;y=2