K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 4 2016

đề thiếu
 

16 tháng 3 2017

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Leftrightarrow\frac{xy+yz+zx}{xyz}=0\Leftrightarrow xy+yz+zx=0\)

\(\Leftrightarrow xy=-yz-zx;yz=-xy-zx;zx=-xy-yz\)

Ta có: x2+2yz=x2+yz+yz=x2+yz-xy-zx=x(x-y)-z(x-y)=(x-y)(x-z)

Tương tự: \(y^2+2xz=\left(y-x\right)\left(y-z\right);z^2+2xy=\left(z-x\right)\left(z-y\right)\)

A= \(\frac{yz}{x^2+2yz}+\frac{xz}{y^2+2xz}+\frac{xy}{z^2+2xy}\)=\(\frac{yz}{\left(x-y\right)\left(x-z\right)}+\frac{xz}{\left(y-x\right)\left(y-z\right)}+\frac{xy}{\left(z-x\right)\left(z-y\right)}\)

\(=\frac{yz\left(y-z\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}-\frac{xz\left(x-z\right)}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}+\frac{xy\left(x-y\right)}{\left(x-z\right)\left(y-z\right)\left(x-y\right)}\)

\(=\frac{yz\left(y-z\right)-xz\left(x-z\right)+xy\left(x-y\right)}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)\(=\frac{xy\left(x-y\right)-xz\left(x-y+y-z\right)+yz\left(y-z\right)}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)

\(=\frac{xy\left(x-y\right)-xz\left(x-y\right)-xz\left(y-z\right)+yz\left(y-z\right)}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)\(=\frac{\left(xy-xz\right)\left(x-y\right)-\left(xz-yz\right)\left(y-z\right)}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)

\(=\frac{x\left(y-z\right)\left(x-y\right)-z\left(x-y\right)\left(y-z\right)}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}=\frac{\left(x-y\right)\left(y-z\right)\left(x-z\right)}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}=1\)

23 tháng 10 2023

Mình tự làm tận 1h nên hơi dài 1 tí nhưng chắc chắn đúng đó :))

Ta có: x2 + y2 + xy .- 3x - 3y + 3 = 0

     =>( x2 - 2x + 1) - x + ( y2 - 2y + 1) - y + xy + 1 = 0

     => (x-1)2 + (y-1)2 + ( -x + -y + xy +1) = 0

     => (x-1)2 + (y-1) + [(-x+ xy) + (-y+1)] = 0

    => (x-1)2 + (y-1)+ [ x(y-1) - (y-1)] = 0

    => (x-1)2 + (y-1)2 + (x-1)(y-1) = 0

    => (x-1)2 +  2.1/2.(x-1)(y-1) + (1/2)2.(y-1)2 + 3/4.(y-1)2 = 0

    => [x-1+1/2(y-1) ]2 + 3/4.(y-1)2  = 0

   Vì: [x-1+1/2(y-1) ] >= 0 với mọi x;y thuộc R

         3/4.(y-1)2 >= 0 với mọi y thuộc R

     => (x-1+1/2y -1/2 = 0) và ( y-1 = 0)

     => (x = 1/2 -1/2y+1) và (y=1)

      => x = y =1

Chỗ này thay giá trị vào biểu thức rồi chứng minh = cách chỉ ra các cơ số của từng lũy thừa là số nguyên là xong.

 

     

 

23 tháng 10 2023

đúng đó

 

 

12 tháng 5 2021

Áp dụng bất đẳng thức Svacxo và bất đẳng thức \(\frac{1}{4ab}\ge\frac{1}{\left(a+b\right)^2}\)ta có :

\(Q=\frac{2}{x^2+y^2}+\frac{2}{2xy}+\frac{4}{2xy}=2\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{8}{4xy}\)

\(\ge2\frac{\left(1+1\right)^2}{\left(x+y\right)^2}+\frac{8}{\left(x+y\right)^2}=\frac{2.4}{2^2}+\frac{8}{2^2}=\frac{16}{4}=4\)

Dấu "=" xảy ra khi và chỉ khi \(x=y=1\)

Vậy min Q = 4 khi x = y = 1