\(x^3+y^3=1.\) Tìm maxA=x+y.

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2019

\(1=x^3+y^3=\frac{x^4}{x}+\frac{y^4}{y}\ge\frac{\left(x^2+y^2\right)^2}{x+y}\ge\frac{\frac{\left(x+y\right)^4}{4}}{x+y}=\frac{\left(x+y\right)^3}{4}\)

\(\Leftrightarrow\)\(x+y\le\sqrt[3]{4}\)

Dấu "=" xảy ra khi \(x=y=\frac{1}{\sqrt[3]{2}}\)

23 tháng 3 2015

KQ : MaxA=3 <=>x=y=z=1

11 tháng 6 2019

Đặt \(\left(x;y;z\right)\rightarrow\left(a^3;b^3;c^3\right)\Rightarrow a^3b^3c^3=1\Rightarrow abc=1\).

Thì \(A=\Sigma_{cyc}\frac{1}{a^3+b^3+1}\le\Sigma_{cyc}\frac{1}{ab\left(a+b+c\right)}=\frac{a+b+c}{abc\left(a+b+c\right)}=\frac{1}{abc}=1\)

Dấu "=" xảy ra khi a = b = c = 1 tức là x = y = z = 1

Đúng không ta?:3

30 tháng 12 2017

x^3+y^3=xy-1/27

<=>(x^3+y^3+1/27)-xy=0

<=>(x^3+y^3+z^3)-3.x.y.1/3 = 0

<=> (x+y+1/3).(x^2+y^2+1/9-xy-1/3x-1/3y) = 0 [đã học để phân tích a^3+b^3+c^3-3abc = (a+b+c).(a^2+b^2+c^2-ab-bc-ca)]

<=> x+y+1/3=0 hoặc x=y=1//3 ( cũng đã học trường hợp a^3+b^3+c^3-3abc = 0 <=> a+b+c = 0 hoặc a=b=c )

=> x=y=1/3 ( vì x,y < 0 )

Khi đó thay x+y vào rùi tính P

k mk nha

8 tháng 3 2018

Áp dung BĐT HoIder ta có

\(\left(1+1+1\right)\left(1+1+1\right)\left(x^3+y^3+z^3\right)\ge\left(x+y+z\right)^3\)

\(\Leftrightarrow9\left(x^3+y^3+z^3\right)\ge1\)

\(\Leftrightarrow x^3+y^3+z^3\ge\frac{1}{9}\)

"=" <=> \(x=y=z=\frac{1}{3}\)

8 tháng 3 2018

chó thắng éo bít gì cx chọn sai khi người ta làm đúng. Chó kiki

24 tháng 10 2017

Gọi \(\overrightarrow{1a}=\left(x;\frac{1}{x}\right);\overrightarrow{b}=\left(y;\frac{1}{y}\right);\overrightarrow{c}=\left(z;\frac{1}{z}\right)\)

Ta có:

\(\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}+\sqrt{z^2+\frac{1}{z^2}}=\left|\overrightarrow{a}\right|+\left|\overrightarrow{b}\right|+\left|\overrightarrow{c}\right|\)

\(\ge\left|\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}\right|=\sqrt{\left(x+y+z\right)^2+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}\)\(\ge\sqrt{1^2+\frac{9^2}{\left(x+y+z\right)^2}}\)

\(=\sqrt{1+81}=\sqrt{82}\)

    

24 tháng 10 2017

Áp dụng BDT MInkopki

VT\(\ge\)\(\sqrt{\left(x+y+z\right)^2+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}\)\(\ge\sqrt{\left(x+y+z\right)^2+\frac{81}{\left(x+y+z\right)^2}}=\sqrt{82}\)

BDT minkopki

\(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}+\sqrt{e^2+f^2}\ge\sqrt{\left(a+c+e\right)^2+\left(b+d+f\right)^2}\)