Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\left(x-y\right)\left(x+y\right)+5x=5y\)
\(\Leftrightarrow\left(x-y\right)\left(x+y\right)+5x-5y=0\)
\(\Leftrightarrow\left(x-y\right)\left(x+y\right)+5\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x+y+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-y=0\\x+y+5=0\end{cases}\left(1\right)}\)
Ta có :
\(\orbr{\begin{cases}x>0\\y>0\end{cases}}\)
\(\rightarrow x+y>0\)
\(\rightarrow x+y+5>0\)
Vậy \(x+y+5=0\)là vô lí
Khi đó : \(x-y=0\)
\(\Leftrightarrow x=y\)
\(A=27.\left(y-x\right)^{2021}-\left(x-5y\right)^2+16y^2+2022\)
\(=27\left(y-y\right).2021-\left(-4y\right)^2+16y^2+2022\)
\(=16y^2+16y^2+2022\)
\(=2022\)
Vậy \(A=2022\)

(3x - 1)^2016 + (5y - 3)^2016 < 0 (1)
có (3x - 1)^2016 > 0
(5y - 3)^2018 > 0
=> (3x-1)^2016 + (5y - 3)^2018 > 0 và (1)
=> (3x - 1)^2016 + (5y - 3)^2016 = 0
=> 3x - 1 = 0 và 5y - 3 = 0
=> x = 1/23 và y = 3/5

A=\( {1 \over 2}\)y.4x2y4+3x4y5
=2x2y5+3x4y5
ta có gt=>x=2;y=-1
thay vào đc A=56

Ta có:
\(\left|x-1\right|+\left(y+2\right)^{20}=0\)
\(\Rightarrow\left|x-1\right|=0\) và \(\left(y+2\right)^{20}=0\)
+) \(\left|x-1\right|=0\Rightarrow x-1=0\Rightarrow x=1\)
+) \(\left(y+2\right)^{20}=0\Rightarrow y+2=0\Rightarrow y=-2\)
\(\Rightarrow C=2x^5-5y^3+2015\)
\(=2.1^5-5.\left(-2\right)^3+2015\)
\(=2-\left(-40\right)+2015\)
\(=2057\)
Vậy C = 2057

Vì |2x-y| \(\ge0\)\(\forall x,y\)
\(\left(y+2\right)^{2018}\ge0\forall y\)
\(\Rightarrow\left|2x-y\right|+\left(y+2\right)^{2018}\ge0\)
Dấu = xảy ra
\(\Leftrightarrow\hept{\begin{cases}2x-y=0\\y+2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=-1\\y=-2\end{cases}}\)(Thay vào C ta đc )
\(C=2\cdot\left(-1\right)^{2019}-5\left(-2\right)^3+2019\)=2057
Vậy .......
Vì /2x-y/ \(\ge\)0 với mọi x,y,
(y + 2)2018\(\ge\)0 với mọi y
suy ra \(|2x-y|\)+ (y + 2)2018\(\ge\)0 với mọi x,y (1)
mà suy ra \(|2x-y|\)+ (y + 2)2018 =0 (2)
Từ (1) và (2) suy ra \(|2x-y|\)=0 và (y + 2)2018 = 0
suy ra 2x=y và y=-2
suy ra x=-1 và y=-2
Như vậy C= 2. ( -1)2019 - 5 (-2) 3 + 2019 = -2 +40 + 2019 = 2057

\(\left|x-1\right|+\left(y+2\right)^{20}=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
\(C=2\cdot1^2-5\cdot\left(-2\right)^3+2015=2015+1+40=2056\)

Ta có: \(\left(x-1\right)^{20}\ge0\forall x\)
\(\left(y+2\right)^{30}\ge0\forall x\)
\(\Rightarrow\left(x-1\right)^{20}+\left(y+2\right)^{30}\ge0\)
Mà \(\left(x-1\right)^{20}+\left(y+2\right)^{30}=0\)
\(\Rightarrow\left(x-1\right)^{20}=\left(y+2\right)^{30}=0\)
\(\Rightarrow x-1=y+2=0\)
\(\Rightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}\)
Thay x = 1 và y = -2 vào biểu thức A ta được:
\(A=2.1^5-5.\left(-2\right)^3+4=-76\)
Vậy A = -76 tại x = 1 và y = -2.
Ta có : \(\hept{\begin{cases}\left(x-1\right)^{20}\ge0\forall x\\\left(y+2\right)^{30}\ge0\forall y\end{cases}}\Rightarrow\left(x-1\right)^{20}+\left(y+2\right)^{30}\ge0\forall x;y\)
Dựa vào đề bài ta có \(\hept{\begin{cases}x-1=0\\y+2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}\)
Khi đó A = 2.15 - 5.(-2)3 + 4 = 2 + 40 + 4 = 46
\(\left(x-y\right)\left(x+y\right)+5x=5y\)
\(\Leftrightarrow\left(x-y\right)\left(x+y+5\right)=0\)
\(\Leftrightarrow x-y=0\)(vì \(x,y>0\)nên \(x+y+5>0\))
\(\Leftrightarrow x=y\)
\(A=27\left(y-x\right)^{2021}-\left(x-5y\right)^2+16y^2+2022\)
\(=-\left(4y\right)^2+16y^2+2022=2022\)