K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2017

Từ \(x-y=xy-1\Rightarrow x-y-xy+1=0\)

\(\Rightarrow x\left(1-y\right)-\left(y-1\right)=0\)

\(\Rightarrow-x\left(y-1\right)-\left(y-1\right)=0\)

\(\Rightarrow-\left(x+1\right)\left(y-1\right)=0\)

13 tháng 9 2021

mọi người trả lời giúp mình với mình cần gấp

a: \(M=x^3+x^2-y^3+y^2+xy-3xy-95\)

\(=\left(x-y\right)^3+\left(x-y\right)^2-95\)

\(=7^3+7^2-95=297\)

b: \(N=3\left[\left(x+y\right)^2-2xy\right]-2\left(x+y\right)+6xy-100\)

\(=3\cdot\left(25-2xy\right)-10+6xy-100\)

=75-6xy-10+6xy-100

=-35

a: \(F=-\left(2x-y\right)^3-x\left(2x-y\right)^2-y^3\)

\(=-\left(2x-y\right)^2\cdot\left[2x-y+x\right]-y^3\)

\(=-\left(2x-y\right)^2\cdot\left(3x-y\right)-y^3\)

\(=\left(-4x^2+4xy-y^2\right)\left(3x-y\right)-y^3\)

\(=-12x^3+4x^2y+12x^2y-4xy^2-3xy^2+y^3-y^3\)

\(=-12x^3+16x^2y-7xy^2\)

\(\left(x-2\right)^2+y^2=0\)

mà \(\left(x-2\right)^2+y^2>=0\forall x,y\)

nên dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-2=0\\y=0\end{matrix}\right.\)

=>x=2 và y=0

Thay x=2 và y=0 vào F, ta được:

\(F=-12\cdot2^3+16\cdot2^2\cdot0-7\cdot2\cdot0^2\)

\(=-12\cdot2^3\)

\(=-12\cdot8=-96\)

b: \(G=\left(x+y\right)\left(x^2-xy+y^2\right)+3\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)

\(=x^3+y^3+3\left(2x-y\right)\left[\left(2x\right)^2+2x\cdot y+y^2\right]\)

\(=x^3+y^3+3\left(8x^3-y^3\right)\)

\(=x^3+y^3+24x^3-3y^3\)

\(=25x^3-2y^3\)

Ta có: \(\left\{{}\begin{matrix}x+y=2\\y=-3\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=-3\\x=2-y=2-\left(-3\right)=2+3=5\end{matrix}\right.\)

Thay x=5 và y=-3 vào G, ta được:

\(G=25\cdot5^3-2\cdot\left(-3\right)^3\)

\(=25\cdot125-2\cdot\left(-27\right)\)

\(=3125+54=3179\)

c: \(H=\left(x+3y\right)\left(x^2-3xy+9y^2\right)+\left(3x-y\right)\left(9x^2+3xy+y^2\right)\)

\(=\left(x+3y\right)\left[x^2-x\cdot3y+\left(3y\right)^2\right]+\left(3x-y\right)\left[\left(3x\right)^2+3x\cdot y+y^2\right]\)

\(=x^3+27y^3+27x^3-y^3\)

\(=28x^3-26y^3\)

Ta có: \(\left\{{}\begin{matrix}3x-y=5\\x=2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=2\\y=3x-5=3\cdot2-5=1\end{matrix}\right.\)

Thay x=2 và y=1 vào H, ta được:

\(H=28\cdot2^3-26\cdot1^3\)

\(=28\cdot8-26\)

=198

28 tháng 8 2019

Ta co:\(x^2-y=y^2-x\)

\(\Leftrightarrow\left(x-y\right)\left(x+y+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=y\\x+y=-1\end{cases}}\)

TH:\(x=y\left(l\right)\)(Vi x,y la 2 so khac nhau)

TH:\(x+y=-1\)

Ta co:\(A=\left(x+y\right)^2-3\left(x+y\right)=1+3=4\)

1 tháng 11 2023

 Thực hiện phép tính (10x^5y^2-6x^2y^5+8x^2y^5):(-2x^2y^2)

2 tháng 8 2017

Từ \(x^2-y=y^2-x\)\(\Rightarrow x^2-y^2+x-y=0\)

\(\Rightarrow\left(x-y\right)\left(x+y\right)+\left(x-y\right)=0\)

\(\Rightarrow\left(x-y\right)\left(x+y+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-y=0\\x+y+1=0\end{matrix}\right.\)\(\Rightarrow x+y=-1\) (vì \(x,y\) là 2 số khác nhau)

Khi đó \(A=x^2+2xy+y^2-3x-3y\)

\(=\left(x+y\right)^2-3\left(x+y\right)=\left(-1\right)^2-3\cdot\left(-1\right)=4\)

\(x^2-y=y^2-x\\ \Leftrightarrow x^2-y^2+x-y=0\\ \Leftrightarrow\left(x-y\right)\left(x+y+1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-y=0\Rightarrow x=y\\x+y=-1\Rightarrow x=-1-y\end{matrix}\right.\)

khi đó:

\(\left[{}\begin{matrix}A=y^2+2y.y+y^2-3y-3y\\A=\left[\left(-1-y\right)+y\right]^2-3\left(-1-y+y\right)\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}A=4y^2-6y\\A=4\end{matrix}\right.\)

đến đây thì mình chả bt trình bày sao nửa, mong bạn thông cảm