Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có:
\(x=\frac{2}{2\sqrt[3]{2}+2\sqrt[3]{4}}=\frac{1}{\sqrt[3]{2}+\sqrt[3]{4}}=\)\(\frac{2\sqrt[3]{2}-2+\sqrt[3]{4}}{6}\)
\(y=\frac{6}{2\sqrt[3]{2}-2+\sqrt[3]{4}}=\frac{6\left(\sqrt[3]{2}+\sqrt[3]{4}\right)}{6}\)
\(\Rightarrow xy^3-x^3y=xy\left(y^2-x^2\right)=y^2-x^2=\frac{36\left(\sqrt[3]{4}+4+2\sqrt[3]{2}\right)}{36}\)\(-\frac{4\sqrt[3]{4}+4+2\sqrt[3]{2}-8\sqrt[3]{2}+8-4\sqrt[3]{4}}{36}\)\(=\frac{36\sqrt[3]{4}+144+72\sqrt[3]{2}-12+6\sqrt[3]{2}}{36}=\frac{36\sqrt[3]{4}+78\sqrt[3]{2}+132}{36}\)\(=\frac{6\sqrt[3]{4}+13\sqrt[3]{2}+22}{6}\)

a: \(A=6-3\sqrt{3}+4+\sqrt{3}+2\sqrt{3}=10\)
b: \(B=\sqrt{x}-\sqrt{y}-\sqrt{x}-\sqrt{y}=-2\sqrt{y}\)
c: \(C=\dfrac{\sqrt{3}-1}{\sqrt{6}-\sqrt{2}}=\dfrac{1}{\sqrt{2}}=\dfrac{\sqrt{2}}{2}\)

a: \(=\sqrt{3}+1-\sqrt{3}=1\)
b: \(=\sqrt{\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)^2}}=\dfrac{\left|\sqrt{x}-1\right|}{\sqrt{x}+1}\)
c: Sửa đề:\(\dfrac{x-1}{\sqrt{y}-1}\cdot\sqrt{\dfrac{y-2\sqrt{y}+1}{\left(x-1\right)^4}}\)
\(=\dfrac{x-1}{\sqrt{y}-1}\cdot\dfrac{\sqrt{y}-1}{\left(x-1\right)^2}=\dfrac{1}{\left(x-1\right)}\)

bài 1
biểu thức có nghĩa khi x, y thỏa mãn đồng thời
\(\left\{{}\begin{matrix}x,y\ne0\\\dfrac{y}{x}\ge0\end{matrix}\right.\Rightarrow x.y>0}\)x, y khác 0
x.y>0