Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
* Rút gọn:
\(A=\left(x^2+xy-y^2\right)-x^2-4xy-3y^2\)
\(A=x^2+xy-y^2-x^2-4xy-3y^2\)
\(A=\left(x^2-x^2\right)+\left(xy-4xy\right)+\left(-y^2-3y^2\right)\)
\(A=-3xy-4y^2\)
* Tính:
Thay x=0,5 và y= -4 vào biểu thức trên, ta được:
\(-3.0,5.\left(-4\right)=-1,5.\left(-4\right)=6\)
Vậy: giá trị biểu thức \(A=-3xy-4y^2\)tại x=0,5 và y=-4 là 8
Tham khảo:Câu hỏi của Victor JennyKook - Toán lớp 7 - Học toán với OnlineMath
`@` `\text {Ans}`
`\downarrow`
`a)`
`A + (x^2 - 4xy^2 + 2xz - 3y^2) = 2xz - 5xy^2 - x^2`
`=> A = (2xz - 5xy^2 - x^2) - (x^2 - 4xy^2 + 2xz - 3y^2)`
`= 2xz - 5xy^2 - x^2 - x^2 + 4xy^2 - 2xz + 3y^2`
`= (2xz - 2xz) + (-5xy^2 + 4xy^2) + (-x^2 - x^2) + 3y^2`
`= -xy^2 - 2x^2 + 3y^2`
Vậy, `A= -xy^2 - 2x^2 - 3y^2`
`b)`
`B - (xy+y^2-x^2) = x^2 + y^2`
`=> B = x^2 + y^2 + xy + y^2 - x^2`
`= (x^2 - x^2) + (y^2 + y^2) + xy`
`= 2y^2 + xy`
Vậy, `B = 2y^2 + xy.`
a: A=2xz-5xy^2-x^2-x^2+4xy^2-2xz+3y^2
=-2x^2-xy^2+3y^2
b: B=x^2+y^2+xy+y^2-x^2
=2y^2+xy
Thay x=3, y=2 vào B ta có:
\(B=4xy\left(x-y\right)\\
=4.3.2\left(3-2\right)\\
=24.1\\
=24\)
\(=\frac{2x\left(x-2y\right)}{\left(x+2y\right)^2}:\frac{\left(2y-x\right)\left(2y+x\right)}{\left(x-2y\right)^2}:\frac{5xy\left(x-2y\right)}{\left(x+2y\right)^3}\)
Điều kiện: \(x\ne2y;x\ne-2y;x\ne0;y\ne0\)
\(=\frac{2x\left(x-2y\right)}{\left(x+2y\right)^2}:\frac{\left(2y+x\right)}{\left(x-2y\right)}:\frac{5xy\left(x-2y\right)}{\left(x+2y\right)^3}\)
\(=\frac{2x\left(x-2y\right)}{\left(x+2y\right)^2}\times\frac{x-2y}{x+2y}\times\frac{\left(x+2y\right)^3}{5xy\left(x-2y\right)}=\frac{2\left(x-2y\right)}{5y}\)
1) A+B = \(-2x^2+3x^4+4x^3+1\)
A-B = \(3x^4-2x^2-4x^3+1\)
2) A+B= 0 + 0 + 5
⇒A+B = 5
A-B = \(-4x^3+2x^2-35\)
3) A+B = \(5y^2-8xy\)
A-B = \(-2x^2-3y^2\)