Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét : 2017.2017 = (x+y+z).(1/x+y + 1/x+z + 1/y+z)
= x/y+z + y/x+z + z/x+y + 1 + 1 + 1
= x/y+z + y/x+z + z/x+y + 3
=> A = x/y+z + y/x+z + z/x+y = 2017^2 - 3 = 4068286
Tk mk nha
Ta có :(x+y+z)(1/x+y + 1/y+z + 1/x+z) =20172
=>x/x+y +y/x+y +z/x+y + x/y+z + y/y+z + z/y+z +x/x+z + y/x+z + z/x+z=20172
=>(x/x+y + y/x+y)+(y/y+z + z/y+z)+(x/x+z + z/x+z)+(x/y+z + y/x+z + z/x+y) =4068289
=>1+1+1+A=4068289
=>A=4068286
ta có: \(x+y+z=a\Rightarrow x^2+y^2+z^2+2\left(xy+yz+xz\right)=a^2\)
\(\Rightarrow b+2\left(xy+yz+xz\right)=a^2\Rightarrow xy+yz+xz=\frac{a^2-b}{2}\)
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{c}\Rightarrow\frac{xy+yz+xz}{xyz}=\frac{1}{c}\Rightarrow c\left(xy+yz+xz\right)=xyz\)
Ta có:\(x^3+y^3+z^3=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)+3xyz\)
\(=a\left(b-\frac{a^2-b}{2}\right)+\frac{3c\left(a^2-b\right)}{2}\)
Đặt \(\dfrac{1}{a}=\dfrac{1}{x+y},\dfrac{1}{b}=\dfrac{1}{y+z},\dfrac{1}{c}=\dfrac{1}{z+x}\)
Đề trở thành: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\), tính \(P=\dfrac{bc}{a^2}+\dfrac{ac}{b^2}+\dfrac{ab}{c^2}\)
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\) Tương đương \(ab+bc=-ac\)
\(P=\dfrac{b^3c^3+a^3c^3+a^3b^3}{a^2b^2c^2}=\dfrac{\left(ab+bc\right)\left(a^2b^2-ab^2c+b^2c^2\right)+a^3c^3}{a^2b^2c^2}=\dfrac{-ac\left(a^2b^2-ab^2c+b^2c^2\right)+a^3c^3}{a^2b^2c^2}\)
\(=\dfrac{a^2c^2-a^2b^2+ab^2c-b^2c^2}{ab^2c}=\dfrac{ac}{b^2}-\dfrac{a}{c}+1-\dfrac{c}{a}\)\(=ac\left(\dfrac{1}{a^2}+\dfrac{2}{ac}+\dfrac{1}{c^2}\right)-\dfrac{a}{c}+1-\dfrac{c}{a}\) (do \(\dfrac{1}{b}=-\dfrac{1}{a}-\dfrac{1}{c}\) tương đương \(\dfrac{1}{b^2}=\dfrac{1}{a^2}+\dfrac{2}{ac}+\dfrac{1}{c^2}\))
\(=3\)
Vậy P=3
a) Ta có: \(A=x\left(x+2\right)+y\left(y-2\right)-2xy+37\)
\(=x^2+2x+y^2-2y-2xy+37\)
\(=\left(x^2-2xy+y^2\right)+\left(2x-2y\right)+37\)
\(=\left(x-y\right)^2+2\left(x-y\right)+37\)
\(=\left(x-y\right)\left(x-y+2\right)+37\)(1)
Thay x-y=7 vào biểu thức (1), ta được:
\(A=7\cdot\left(7+2\right)+37=7\cdot9+37=100\)
Vậy: Khi x-y=7 thì A=100
b) Ta có: \(x+y=2\)
\(\Leftrightarrow\left(x+y\right)^2=4\)
\(\Leftrightarrow x^2+y^2+2xy=4\)
\(\Leftrightarrow2xy+10=4\)
\(\Leftrightarrow2xy=-6\)
\(\Leftrightarrow xy=-3\)
Ta có: \(A=x^3+y^3\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)\)(2)
Thay x+y=2; \(x^2+y^2=10\) và xy=-3 vào biểu thức (2), ta được:
\(A=2\cdot\left(10+3\right)=2\cdot13=26\)
Vậy: Khi x+y=2 và \(x^2+y^2=10\) thì A=26
\(\Rightarrow A=x^2+2x+y^2-2y-2xy+37=x^2-2xy+y^2+2\left(x-y\right)+37=\left(x-y\right)^2+2\left(x-y\right)+37=7^2+2\cdot7+37=100\)
\(\Rightarrow A=x^3+y^3=\left(x+y\right)\left(x^2+y^2-xy\right)=\left(x+y\right)\left[x^2+y^2-\dfrac{\left(x+y\right)^2-\left(x^2+y^2\right)}{2}\right]=2\cdot\left[10+3\right]=2\cdot13=26\) \(\Rightarrow\left\{{}\begin{matrix}x+y=-z\\x+z=-y\\y+z=-x\end{matrix}\right.\) \(\Rightarrow P=\left(\dfrac{x+y}{y}\right)\left(\dfrac{y+z}{z}\right)\left(\dfrac{x+z}{x}\right)=-\dfrac{z}{y}\cdot\dfrac{-x}{z}\cdot-\dfrac{y}{x}=-1\)
Từ gt 1/x + 1/y + 1/z = 0 suy ra xy + yz + zx = 0 (1)
Mặt khác x + y + z =1. Bình phương 2 vế ta đc : : x2 + y2 + z2 + 2(xy + yz + zx) = 1 (2)
Từ (1) và (2) suy ra x2 + y2 + z2 =1. Vậy A =1
Minh lam them cach khac nua gop vui: x^2 + y^2 + z^2 = (x+y)^2 - 2xy + z^2 = (1- z)^2 - 2xy + z^2 = 1 - 2z - 2xy + 2z^2
Tuong tu = 1 - 2x - 2yz + 2z^2 = 1 - 2y - 2zx + 2x^2. Cộng vế theo vế của 3 đẳng thức trên ta được:
3(x^2 + y^2 + z^2) = (1+1+1) - 2(x+y+z) - 2(xy + yz + zx) + 2(x^2 + y^2 + z^2) <=> x^2 + y^2 + z^2 = 3 - 2.1 - 2xyz(1/x + 1/y + 1/z) = 1
mọi người giúp mình đi mình cần gắp lắm á