Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Ta có:
• PQ là đường trung bình của ΔABC nên PQ // BC và PQ = BC/2 (1)
• RS là đường trung bình của ΔDBC nên RS // BC và RS = BC/2 (2)
Từ (1) và (2) suy ra PQ // RS và PQ = RS
Suy ra tứ giác PQRS là hình bình hành.
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của BC
Do đó:MN là đường trung bình của ΔBAC
Suy ra: MN//AC và \(MN=\dfrac{AC}{2}\left(1\right)\)
Xét ΔACD có
P là trung điểm của CD
Q là trung điểm của DA
Do đó: PQ là đường trung bình của ΔACD
Suy ra: PQ//AC và \(PQ=\dfrac{AC}{2}\left(2\right)\)
Từ (1) và (2) suy ra MN//PQ và MN=PQ
hay MNPQ là hbh
a: Xét tứ giác ABPD có
AB//PD
AB=PD
Do đó: ABPD là hình bình hành
Xét ΔABC có
M là trung điểm của AB
N là trung điểm của BC
Do đó: MN là đường trung bình
=>MN//AC và MN=AC/2(1)
Xét ΔADC có
Q là trung điểm của AD
P là trung điểm của CD
Do đó: QP là đường trung bình
=>QP//AC và QP=AC/2(2)
Từ (1) và (2) suy ra MN//PQ và MN=PQ
hay MNPQ là hình bình hành
b: Để MNPQ là hình thoi thì MN=MQ
hay AC=BD
b) Để PQRS là hình thoi ⇔ PQ = PS ⇔ BC = AD . Vậy tứ giác ABCD phải thêm điều kiện BC = AD thì PQRS là hình thoi.
a) Ta có PS là đường trung bình của
Suy ra PS // AD và PS = AD/2
Để PQRS là hình chữ nhật ⇔ PQ ⊥ PS ⇔ BC ⊥ AD
Vậy tứ giác ABCD phải thêm điều kiện BC ⊥ AD thì PQRS là hình chữ nhật.
(Hình thì bạn tự vẽ nha)
a) Xét tam giác BAD có: MB=MA ; QB=QD
=> MQ là đường trung bình của tam giác BAD
=> MQ // AD ; MQ = 1/2 AD (1)
Xét tam giác CAD có: NC = NA ; PC = PD
=> NP là đường trung bình của tam giác CAD
=> NP // AD ; NP = 1/2 AD (2)
Từ (1), (2) => MQ // NP ; MQ = NP
Tứ giác MNPQ có: MQ // NP ; MQ = NP
=> MNPQ là hình bình hành
b) Theo a), ta có: MQ = 1/2 AD (*)
Xét tam giác ABC có: MA = MB ; NA = NC
=>MN là đường trung bình của tam giác ABC
=> MN = 1/2 BC (**)
Từ (*), (**) và AD=BC (ABCD là thang cân)
=> MQ = MN
Hình bình hành MNPQ có MQ = MN
=> MNPQ là hình thoi
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của BC
Do đó: MN là đường trung bình của ΔABC
Suy ra: MN//AC và MN=AC/2(1)
Xét ΔADC có
Q là trung điểm của AD
P là trung điểm của CD
Do đó: QP là đường trung bình của ΔADC
Suy ra: QP//AC và QP=AC/2(2)
Từ (1) và (2) suy ra MN//PQ và MN=PQ
hay MNPQ là hình bình hành
a: Xét ΔABD có
M là trung điểm của AB
K là trung điểm của AD
Do đó: MK là đường trung bình của ΔBAD
Suy ra: MK//BD và \(MK=\dfrac{BD}{2}\left(1\right)\)
Xét ΔCBD có
N là trung điểm của BC
I là trung điểm của CD
Do đó: NI là đường trung bình của ΔCBD
Suy ra: NI//BD và \(NI=\dfrac{BD}{2}\left(2\right)\)
Từ (1) và (2) suy ra MK//NI và MK=NI
hay MKIN là hình bình hành