Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBAC có BM/BA=BN/BC
nên MN//AC và MN=AC/2
Xét ΔDAC có DP/DC=DQ/DA
nên PQ//AC và PQ=AC/2
=>MN//PQ và MN=PQ
=>MNPQ là hình bình hành
b: Để MNPQ là hình thoi thì MN=MQ
=>AC=BD
cho tứ giác ABCD. Gọi M,N,P,Q lần lượt là tđ của AB,BC,CD,DA.
a) tứ giác MNPQ là hình gì ? vì sao?
MN//BD; PQ//BD
NP//AC; QM//AC
=>MN//PQNP//QNMNPQ la hbbh
Answer:
Hình bạn tự vẽ.
a, Ta xét tam giác ABC
\(AM=MB=\frac{1}{2}AB\)
\(BN=NC=\frac{1}{2}BC\)
\(\Rightarrow MN\) là đường trung bình của tam giác ABC
\(\Rightarrow\hept{\begin{cases}MN=\frac{1}{2}BC\\MN//AC\end{cases}}\)
Chứng minh tương tự, ta được
\(NP;PQ;QM\) lần lượt là đường trung bình của tam giác BCD; tam giác ACD; tam giác ABD
Ý này nếu trình bày trong vở viết bạn gộp tất cả vào một cái ngoặc "và" nhé.
\(NP=\frac{1}{2}BD\)
\(NP//BD\)
\(PQ=\frac{1}{2}AC\)
\(PQ//AC\)
\(QM=\frac{1}{2}BD\)
\(QM//BD\)
Do vậy: \(\hept{\begin{cases}MN//PQ;MN=PQ\\NP//QM;NP=QM\end{cases}}\)
Vậy MNPQ là hình bình hành
b, MNPQ là hình chữ nhật
\(\Rightarrow\widehat{MNP}=90^o\)
\(\Rightarrow MN\perp NP\)
Mà \(\hept{\begin{cases}MN//AC\\NP//BD\end{cases}}\Rightarrow AC\perp BD\)
Vậy tứ giác ABCD có hai đường chéo vuông góc thì MNPQ là hình chữ nhật
Xét ΔABD có : M là trung điểm AB (gt)
Q là trung điểm AD (gt)
=> MQ là đường trung bình của ΔABD
=> MQ // BD ; MQ = 1/2 BD (1)
Xét ΔCBD có : N là trung điểm BC (gt)
P là trung điểm CD (gt)
=> NP là đường trung bình của ΔCBD
=> NP // BD ; NP = 1/2 BD (2)
Từ (1) và (2) => MQ // NP; MQ = NP
Xét tứ giác MNPQ có : MQ // NP (cmt)
MQ = NP (cmt)
=> Tứ giác MNPQ là hình bình hành
a: Xét ΔABD có AM/AB=AQ/AD
nên MQ//BD và MQ=BD/2
Xét ΔCBD có CN/CB=CP/CD
nên NP//BD và NP=BD/2
=>MQ//PN và MQ=PN
=>MNPQ là hình bình hành
Xét ΔBAC có BM/BA=BN/BC
nên MN//AC và MN=AC/2
=>MN vuông góc với NP
=>MNPQ là hình chữ nhật
b: Để MNPQ là hình vuông thì MN=NP
=>AC=BD
Vì M,N,P,Q là trung điểm của AB,BC, CD,DA
=> MN, PQ là đường trung bình tam giác ABC, ADC
=> MN=PQ, MN//PQ
Tương tự NP=MQ, NP//MQ
Từ đây suy ra tứ giác MNPQ là hình bình hành.
MNPQ là hình vuông
<=> MN = NP
<=> AC/2 = BD/2
<=> AC = BD
vậy điều kiện là: tứ giác ABCD có hai đường chéo vuông góc và bằng nhau va 3 goc bang 90 do
MNPQ la hinh chu nhat
<=> MN = NP
<=> AC/2 = BD/2
<=> AC = BD
vậy điều kiện là: tứ giác ABCD có hai đường chéo vuông góc