Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔABD có
M là trung điểm của AB
Q là trung điểm của AD
Do đó: MQ là đường trung bình của ΔABD
Suy ra: MQ//BD và MQ=BD/2(1)
Xét ΔBCD có
N là trung điểm của BC
P là trung điểm của CD
Do đó: NP là đường trung bình của ΔBCD
Suy ra: NP//BD và NP=BD/2(2)
Từ (1) và (2) suy ra MQ//NP và MQ=NP
hay MQPN là hình bình hành
Bài này ko khó lắm đâu. Bạn chỉ cần nghĩ một chút thôi.
a,Nối A với C.
Xét tam giác BAC có: M là trung điểm của AB, N là trung điểm của BC
Suy ra: MN là đường trung bình của tam giác BAC
Nên MN song song với BC.(1)
Xét tam giác ACD có: P là trung điểm của CD và Q là trung điểm của AD.
Do đó: PQ là đường trung bình của tam giác ACD
Nên PQ song song với BC. (2)
Từ (1) và (2), ta có: MN song song với PQ.
b, Xét tam giác MQP có: I là trung điểm của MQ, K là trung điểm của MP
Vì thế IK là đường trung bình của tam giác MQP
Suy ra: IK song song với PQ.
Tương tự, KH là đường trung bình của tam giác MNP
Nên KH song song với MN.
Mà MN song song với PQ
Do đó: KH song song với PQ
Qua điểm K nằm ngoài đường thẳng PQ, có 2 đường thẳng IK,KH cùng song song với PQ nên theo tiên đề Ơclít , 3 điểm I,K,H thẳng hàng.
Chúc bạn học tốt.
a: Xét ΔBAC có
M,N lần lượt là trung điểm của BA,BC
=>MN là đường trung bình của ΔABC
=>MN//AC và MN=AC/2
b: Xét ΔCDA có
P,Q lần lượt là trung điểm của CD,DA
=>PQ là đường trung bình của ΔCDA
=>PQ//AC và \(PQ=\dfrac{AC}{2}\)
MN//AC
PQ//AC
Do đó: MN//PQ
\(MN=\dfrac{AC}{2}\)
\(PQ=\dfrac{AC}{2}\)
Do đó: MN=PQ
Xét tứ giác MNPQ có
MN=PQ
MN//PQ
Do đó: MNPQ là hình bình hành
a: Xét ΔABD có
M là trung điểm của AB
Q là trung điểm của AD
Do đó: MQ là đường trung bình
=>MQ//BD và MQ=BD/2(1)
Xét ΔBCD có
N là trung điểm của BC
P là trung điểm của CD
Do đó: NP là đường trung bình
=>NP//BD và NP=BD/2(2)
Từ (1) và (2) suy ra MQ//NP và MQ=NP
hay MQPN là hình bình hành
Ta có: M là trung điểm của AB
N là trung điểm của BC
=> MN là đường trung bình của \(\Delta\) ABC
=> MN = \(\frac{1}{2}AC\) (1)
Tương tự, ta có: Q là trung điểm của AD
P là trung điểm của DC
=> PQ là đg trung bình của \(\Delta\) ADC
=> PQ = \(\frac{1}{2}AC\) (2)
Từ 1 và 2 => MN = PQ