K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2016

a, xét tam giác ABD có EA=EB <gt>, HB=HD <gt>=>EH//AD

Xét tam giác ADC có FC=FA<gt>, GD=GC<gt>=>FG//AD

=>EH//FG (1)

Chứng minh tương tự :Xét tam giác ABC =>EF//BC

Xét tam giác BDC =>HG//BC

=>EF//HG (2)

=> Tứ giác EFGH là hình bình hành

Kẻ AD vuông góc vs BC tại O

EH//AD, AD vuông góc vs AD => EH vuông góc vs BC

EF//BC , EH vuông góc vs BC =>EF vuông góc vs EH

=> Tứ giác EFGH có góc E=90 nên là hình chữ nhật

b, Chứng minh 2 cạn kề bằng nhau đi

c, Hình chữ nhật cũng là hình thoi 

HÌnh thoi là hình vuông 

=>hình thoi EFGH có góc E =90 <cmt> nên là hình vuông

3 tháng 11 2018

Tẹt Sún tại sao tứ giác ABCD có cạnh AD mà lại kẻ Ad vuông góc với BC nữa vậy ?????

13 tháng 11 2015

tick cho mình rồi mình làm cho

19 tháng 12 2022

c

 

11 tháng 12 2015

trong sách bài tập có mà bn

11 tháng 12 2015

tik mik đi mink tik lại

ok

9 tháng 9 2019

Giải bài 88 trang 111 Toán 8 Tập 1 | Giải bài tập Toán 8

Ta có: EB = EA, FB = FC (gt)

⇒ EF là đường trung bình của ΔABC

⇒ EF // AC và EF = AC/2.

HA = HD, HC = GD

⇒ HG là đường trung bình của ΔADC

⇒ HG // AC và HG = AC/2.

Do đó EF // HG, EF = HG

⇒ EFGH là hình bình hành.

a) Hình bình hành EFGH là hình chữ nhật ⇔ EH ⊥ EF

⇔ AC ⊥ BD (vì EH // BD, EF// AC)

b) Hình bình hành EFGH là hình thoi

⇔ EF = EH

⇔ AC = BD (Vì EF = AC/2, EH = BD/2)

c) EFGH là hình vuông

⇔ EFGH là hình thoi và EFGH là hình chữ nhật

⇔ AC = BD và AC ⊥ DB.

29 tháng 4 2017

Cái hình hơi khó vẽ! :(

Giải:

Ta có: \(EA=EB,FB=FC\left(gt\right)\)

\(\Rightarrow EF\) là đường trung bình của \(\Delta BAC\)

\(\Rightarrow\) \(EF//AC\)\(EF=\dfrac{AC}{2}\left(1\right)\)

Chứng minh tương tự ta có:

\(HG//AC\)\(HC=\dfrac{AC}{2}\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\) suy ra: \(EF//GH\)\(EF=GH\)

\(\Rightarrow EFGH\) là hình bình hành

a) Hình bình hành \(EFGH\) là hình chữ nhật

\(\Leftrightarrow\widehat{FEH}=90^0\Leftrightarrow EF\perp EH\Leftrightarrow AC\perp BD\)\((EF//AC,EH//BD)\)

b) Hình bình hành \(EFGH\) là hình thoi

\(\Leftrightarrow EF=EH\Leftrightarrow AC=BD\) \(\left(EF=\dfrac{AC}{2};EH=\dfrac{BD}{2}\right)\)

c) Hình bình hành \(EFGH\) là hình vuông \(\Leftrightarrow\left\{{}\begin{matrix}AC\perp BD\\AC=BD\end{matrix}\right.\)

11 tháng 12 2021

a: Xét ΔBAD có 

E là tđiểm của AB

H là tđiểm của BD

Do đó: EH là đường trung bình của ΔABD

Suy ra: EH//AD và EH=AD/2(1)

Xét ΔACD có

F là trung điểm của AC

G là trung điểm của CD
Do đó: FG là đường trung bình của ΔACD

Suy ra: FG//AD và FG=AD/2(2)

Từ (1) và (2) suy ra EH//GF và EH=GF

hay EFGH là hình bình hành