\(\Delta AED~\Delta BEC\). Gọi H,...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3 2020

Bạn nào cần thì xem nè ( đợi lâu quá trời luôn mà không có ai trả lời mình hết ) 

Gọi I,J lần lượt là trung điểm của EC và ED.
Ta có tứ giác EINJ là hình bình hành ⇒EJ=NI,EI=NJ và ∠EIN=∠EJN.
Chú ý các tam giác CKE,DHE vuông tại K,H, theo tính chất đường trung tuyến
⇒JH=JE=IN,IK=IE=JN
Ta có KIC,HJD là các tam giác cân tại I và J, từ đó
∠KIE=2∠ACB=2∠ADB=∠HJE⇒∠KIN=∠HJN.
Do đó △KIN=△NJH (c.g.c)⇒NK=NH.
Chứng minh tương tự MH=MK⇒MN là đường trung trực của HK.
Bởi vậy HK⊥MN 

5 tháng 10 2016

A B C D M N L H

Do MN là đường trung bình của tam giác ABD nên MN // BD. Vậy thì \(LH\perp MN.\)

Lại có LN là đường trung bình của tam gaisc ACD nên LN // CD. Do \(MH\perp CD\Rightarrow MH\perp LN.\)

Xét tam giác LNM có LH và MH là các đường cao nên H là trực tâm tam giác LMN.

17 tháng 10 2022

a,b: Xét ΔCDF vuông tại C và ΔBCE vuông tại B có

CD=BC

CF=BE

Do đó: ΔCDF=ΔBCE
=>góc CDF=góc BCE

=>góc BCE+góc MFC=góc DFC+góc CDF=90 độ

=>CE vuông góc với DF

c: Gọi Klà trung điểm của CD và N là giao của AK và DF

Xét tứ giác AECK có

AE//CK

AE=CK

Do dó: AECK là hình bình hành

SUy ra: AK=CE và AK//CE

=>AK vuông góc với DF

Xét ΔDMC có

K là trung điểm của DC

KN//MC

Do đó: N là trung điểm của DM

Xét ΔAMD có

AN vừa là đường cao, vừa là đường trung tuyến

nên ΔAMD cân tại A

2 tháng 10 2017

t.i.c.k mik mik t.i.c.k lại

10 tháng 11 2018

giải đi người ta t.i.c.k cho