K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 8 2015

mk mới lên lớp 8 nên ko bít làm nhìn mún lòi mắt

28 tháng 7 2018

#naruto Có ai hỏi bạn đâu mà trả lời

21 tháng 4 2017

a) Trong ∆ACD có EA = ED, KA = KC (gt)

nên EK là đường trung bình của ∆ACD

Do đó EK = CD/2

Tương tự KF là đường trung bình của ∆ABC.

Nên KF = AB/2

b) Ta có EF ≤ EK + KF (bất đẳng thức trong ∆EFK)

Nên EF ≤ EK + KF = CD/2 + AB/2 = (AB+CD)/2

Vậy EF ≤ (AB+CD)/2

14 tháng 9 2017

27. Cho tứ giác ABCD. Gọi E, F, K theo thứ tự là trung điểm của AD, BC, AC.

a) So sánh các độ dài EK và CD, KF và AB.

b) Chứng minh rằng EF \(\le\dfrac{AB+CD}{2}\)

Bài giải:

a) Trong ∆ACD có EA = ED, KA = KC (gt)

nên EK là đường trung bình của ∆ACD

Do đó EK =\(\dfrac{CD}{2}\)

Tương tự KF là đường trung bình của ∆ABC.

Nên KF = \(\dfrac{AB}{2}\)

b) Ta có EF ≤ EK + KF (bất đẳng thức trong ∆EFK)

Nên EF ≤ EK + KF = \(\dfrac{CD}{2}\) + \(\dfrac{AB}{2}\) = \(\dfrac{\left(AB+CD\right)}{2}\)

Vậy EF ≤ \(\dfrac{\left(AB+CD\right)}{2}\)



20 tháng 10 2015

đề sai

20 tháng 10 2015

bạn kiểm tra lại đề bài nhé!

22 tháng 12 2019

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Xét ∆ EOM và  ∆ FON có: ∠ (MEO) =  ∠ (NFO) (so le trong do DE//BF)

OE = OF (tính chất hình bình hành)

∠ (MOE)=  ∠ (NOF) (đối đỉnh )

Suy ra:  ∆ EOM =  ∆ FON (g.c.g) ⇒ OM = ON

Vậy tứ giác EMFN là hình bình hành (vì có hai đường chéo cắt nhau tại trung điểm mỗi đường).

c: Ta có: \(EF\le KE+KF\)

\(\Leftrightarrow EF\le\dfrac{DC+AB}{2}\)

Dấu '='xảy ra khi E,K,F thẳng hàng

hay EF//AB//DC

Suy ra: ABCD là hình thang

a: Xét tứ giác BEDF có 

BE//DF

BE=DF

Do đó: BEDF là hình bình hành

Suy ra: BF//DE

hay EM//FN

Xét tứ giác AECF có

AE//CF

AE=CF

Do đó: AECF là hình bình hành

Suy ra: AF//CE

hay MF//EN

Xét tứ giác EMFN có 

EM//FN

EN//MF

Do đó: EMFN là hình bình hành

b: Ta có: AECF là hình bình hành

nên Hai đường chéo AC và EF cắt nhau tại trung điểm của mỗi đường(1)

Ta có: EMFN là hình bình hành

nên Hai đường chéo EF và MN cắt nhau tại trung điểm của mỗi đường(2)

Từ (1) và (2) suy ra AC,EF,MN đồng quy